
Algebra through examples

Or Dagmi - http://digmi.org

January 23, 2014



Lecture notes of the class of 2014. Dr. Josephine Shamash

2



Contents

1 Introduction 5

1.1 Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Commutative rings 7

2.1 The Axioms for a field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Axioms for rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Commutative ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Quotient rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Homomorphisms of rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6.1 Homomorphism Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Special properties of N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Prime, Irreducible and Bézout’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.10 Unique Factorization Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.11 Euclidean Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.11.1 Constructing gcds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Chinese Remainder Theorem 19

3.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 CRT in Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 CRT for a commutative ring R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Application to Public-Key codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Groups 23

4.1 Subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Normal Subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Quotient groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Homomorphism Thm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Cyclic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Lagrange’s Thm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 Fundamental Thm. of finite abelian groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Field Theory 27

5.1 Algebraic extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Basic Extension Thm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3



CONTENTSCONTENTS

5.3 Splitting field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5 Prime field of F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5.1 Some more facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6 Galois group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.7 Separable Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.8 Galois Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.9 Cyclotomic extensions of Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.9.1 Galois group of a cyclotomic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.10 Finite fileds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.10.1 Field’s multiplicative group is cyclic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.10.2 Finite fields of the same oreder are isomorphic . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.10.3 Existance of fields of order pm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.10.4 Factoring xn − 1 over Fp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Vector-spaces over F2 and Error-correcting codes 47

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Parity check digit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Hamming (7, 4)-code - single error correcting code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.1 Efficient decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Double-error correcting code - Bose-Chaudhuri-Hocquenghem code . . . . . . . . . . . . . . . . . . . 50

7 Groups 55

7.1 GL (n, q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.1 Sylow subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Conjugate classes in GL (n, F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3 Conjugate classes in Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Solvable Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.5 Classification of finite simple groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.5.1 The sporadic groups , the Fisscher Griess Monster (1982) . . . . . . . . . . . . . . . . . . . . 62

4



Chapter 1

Introduction

22/10/2013

1.1 Books

1. Nathan Jacobson - Basic Algebra I & II.

2. Roger Carter - Simple groups of Lie type.

3. I.Martin Isaacs: Algebra: A Graduate Course.

4. Serge Lang: Algebra.

5. Simon Singh: The code Book.

6. John Derbyshire: An Unknown Quantity.
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Chapter 2

Commutative rings

2.1 The Axioms for a field

A set F is a field if two binary operations, addition and multiplication, are defined on F so that it is closed under
the operations and for all a, b and c in F :

Name Addition Multiplication

Commutativity a+ b = b+ a ab = ba
Associativity (a+ b) + c = a+ (b+ c) (ab) c = a (bc)

Existence of Identity a+ 0 = a = 0 + a a · 1 = a = 1 · a
Existence of Inverses a+ (−a) = 0 = (−a) + a aa−1 = 1 = a−1a if a ̸= 0

An axiom combining addition and multiplication:

Distributivity:

(a+ b) c = ab+ ac

One usually adds the axiom:
0 ̸= 1

Common field examples:

Example 2.1.1 :

• Q,R,C

• Z/pZ = Zp (finite fields of prime order).
{

0, 1
}

= Z2

2.2 The Axioms for rings

For rings all the above axioms, without the commutativity and existing of inverses for the multiplication exist.

A ring also doesn’t have to contain a multiplication identity, a common notation for rings without identity is: Rng.

Common rings examples:

• Z.

• Z×Z with component-wise operations ((a, b)
+
· (a′, b′) =

(

a
+
· a′, b

+
· b′

)

).

If R,S are rings then R× S is a ring.

• F [x].

7



2.3. GROUPS CHAPTER 2. COMMUTATIVE RINGS

• Z [x].

Definition 2.2.1 A commutative ring is a ring which multiplication is commutative.

Examples:

Example 2.2.2 : Non-comm. rings:
Mn (F ) - n× n matrices over a field F .
Ring of quaternions.

2.3 Groups

If a group is multiplicative (meaning the operation is ·), it follow the Associativity, Existence of identity and
existence of inverse.

If a group is additive, then it’s a convention that the group is also commutative (abelian).

2.4 Commutative ring

Definition 2.4.1 If R is a ring and ∅ ̸= S ⊆ R and S satisfies all the axioms of a ring with respect to the operations
on R, 1R ∈ S, then S is a subring.

Definition 2.4.2 If an additive subgroup I ⊆ R maintains that for every a ∈ R, b ∈ I: a · b, b · a ∈ I then I is
called Ideal.

Note that R · I ⊆ I and that I ·R ⊆ I.

Examples:

1. 0, R are trivial ideals (R is the ring).

2. Ideals in Z:

• 2Z, mZ for any m ∈ Z.

• In fact, we can show that if I ideal in Z (notation: I ▹Z, I ▹R) then I = nZ for some n in Z.

• If I ̸= {0} it contains a positive integer.

• Let n be the smallest positive integer in I, if k ∈ I we can write:

k = q · n+ r

where q, r ∈ Z and 0 ≤ r ≤ n. But note that:

k − qn
︸ ︷︷ ︸

∈I

= r

Hence r ∈ I but is smaller than k! Therefor r = 0 as n chosen to be smallest positive element of I and
k = qn so I ⊆ nZ.

3. For the ringM2 (R), The set A =

{(

a b
0 c

)

| a, b, c ∈ R

}

is a subring of M2 (R) but not an ideal as: e.g.

(

1 1
1 1

)(

1 1
0 1

)

=

(

1 ∗
1 ∗

)

/∈ A

(

1 1
0 1

)(

1 1
1 1

)

=

(

2 ∗
1 ∗

)

/∈ A

8



CHAPTER 2. COMMUTATIVE RINGS 2.5. QUOTIENT RINGS

For non-commutative ring R: If I is an additive subgroup s.t. R · I ⊆ I, we say it is a left ideal.

And if I is an additive subgroup s.t. I · R ⊆ I, we say it is a right ideal.

Remarks 2.4.3 If I ▹R, R ring and 1 ∈ I then R = I. In fact 1 ∈ I ⇐⇒ R = I.

Examples: Now, lets take a look at B =

{(

a b
0 0

)

| a, b ∈ R

}

. Note that:

(

a b
0 0

)(

x y
u v

)

=

(

ax+ bu ay + bv
0 0

)

∈ B

Therefore B is a right ideal. But note that

(

1 0
0 1

)

/∈ B, so B is not a subring. BUT

(

1 0
0 0

)

is an identity element.

w.r.t multiplication in B so B is a ring but not a subring of M2 (R).

Let’s test for left ideal: (

1 1
1 1

)(

1 1
0 0

)

=

(

1 1
1 1

)

/∈ B

So B is not a left ideal.

Remarks 2.4.4 Fields have no non-trivial ideals. If F field, 0 ̸= I ▹ F 0 ̸= a ∈ I ⊆ F then 1 = a−1a ∈ I so I = F .

Notation: The smallest ideal containing an element a ∈ R defined by (a). aR,Ra,RaR ⊆ (a).

Notation: Set-theoretic multiplication R ring, a ∈ R: Ra = {ra | r ∈ R}.
A,B subsets of R: A ·B = {ab | a ∈ A, b ∈ B}.

Claim 2.4.5

If R commutative a ∈ R. (a) = Ra as Ra closed under addition and is an additive subgroup and is an ideal called
a principal ideal (generated bya).

2.5 Quotient rings

(comm/noncomm)

Definition 2.5.1 For any ring R, ideal I we define:

R/I =

⎧

⎨

⎩
I + a
︸ ︷︷ ︸

cosets additive

| a ∈ R

⎫

⎬

⎭

I + a = {b+ a | b ∈ I}

(a is called coset representative).

Claim 2.5.2

Cosets are either equal or disjoint.

We will prove that claim in assignment 1.

Corollary 2.5.3

R/I is a partition of R.

Define operation on R/I to get a ring:

(I + a) + (I + b) = I + (a+ b)

(I + a) · (I + b) = I + a · b

This is a coset multiplication.

Remarks 2.5.4 Coset multiplication is not the same as set-theoretic multiplication.

9



2.5. QUOTIENT RINGS CHAPTER 2. COMMUTATIVE RINGS

Examples:

Example 2.5.5 : R = Z, I = 2Z.

2Z+ 0 = 2Z

(2Z+ 0) ·
︸︷︷︸

coset mult.

(2Z+ 0) = 2Z+ 0 = 2Z

Set-theoretic multiplication:
2Z · 2Z = 4Z

Clearly they are not the same!

Remarks 2.5.6 The operations are well-defined i.e. do not depend on choice of reps.
We shall show for multiplication (addition - at home!).

Proof: a, a′ ∈ R. Proof:
I + a = I + a′ ⇐⇒ a− a′ ∈ I

a− a′ = b ∈ I, a = a′ + b.
I + a = I + a′ + b =

︸︷︷︸

equality of sets!

I + a′

Suppose
I + a = I + a′

I + b = I + b′
then:

∃x ∈ I : a′ = x+ a
∃y ∈ I : b′ = y + b

. By definition:

(I + a) (I + b) = I + ab

I + a′b′ = I + (x+ a) (y + b) = I + xy + ay + xb
︸ ︷︷ ︸

∈I

+ab ⊆ I + ab

By symmetry get also I + ab ⊆ I + a′b′ and also I + ab = I + a′b′.

In R/I : I is the zero element, R/I is an additive group. I + 1 is the identity.

Examples of Quotient rings:

Example 2.5.7 : Z.
Z/5Z = {5Z, 5Z+ 1, 5Z+ 2, 5Z+ 3, 5Z+ 4}

(5Z+ 1) + (5Z+ 3) = 5Z+ 4

(5Z+ 1) + (5Z+ 4) = 5Z

(5Z+ 2) · (5Z+ 3)
︸ ︷︷ ︸

mult inverses

= 5Z+ 6 = 5Z+ 1

In fact, Z/5Z is a field!
We in fact have Z5 =

{

0, 1, 2, 3, 4
}

. k = k + 5Z and operations mod 5.

Example 2.5.8 : F [X ] , where F is a field.
f (x) ∈ F [x].

F [x]/(f(x)) = F [x]/F [x]·f(x)

e.g.
R[x]/

(

x2 − 3x+ 2
)

︸ ︷︷ ︸

=I

= {I + f (x) | f (x) ∈ R [x]}

(I + (x− 1)) · (I + (x− 2)) = I + (x− 1) (x− 2)
︸ ︷︷ ︸

=x2−3x+2

= I

10



CHAPTER 2. COMMUTATIVE RINGS 2.6. HOMOMORPHISMS OF RINGS

2.6 Homomorphisms of rings

Definition 2.6.1 If R,S are both rings. ϕ : R → S is a homomorphism of rings if ϕ preserves the operations
i.e.

∀a, b ∈ R ϕ (a) + ϕ (b) = ϕ (a+ b)

∀a, b ∈ R ϕ (a) · ϕ (b) = ϕ (a · b)
ϕ (1R) = 1S

Remarks 2.6.2 If ϕ is additive and multiplication and ϕ (1) = x ∈ S then:

x2 = ϕ (1) · ϕ (1) = ϕ (1 · 1) = ϕ (1) = x

So x2 − x = 0⇒ x (x− 1) = 0.
This does not always imply x = 1 or x = 0! if x = 0 then ϕ is the 0-map. If S has zero divisors x (x− 1) = 0 can
hold also for x ̸= 0, 1.

29/10/2013

Definition 2.6.3 Kernel: The kernel of a homomorphism ϕ is:

kerϕ = {x ∈ R | ϕ (x) = 0}

Remarks 2.6.4 This set is not empty, because 0 ∈ kerϕ.

Claim 2.6.5

kerϕ is an ideal in R.

We will prove this claim in the exercise.

Remarks 2.6.6 To prove a set is an ideal we need to:

1. Show that the set is not empty.

2. We have to prove that R · I ⊆ I and that I · R ⊆ I.

3. Closed under +.

4. Existence of additive inverse (hence 0 ∈ I).

2.6.1 Homomorphism Theorem

Definition 2.6.7 A homomorphism which is 1-1 and onto is an isomorphism.

Definition 2.6.8 Image: If ϕ homomorphism, the set Imϕ = {ϕ (a) | a ∈ R}=image of ϕ

Theorem 2.6.9 Homomorphism Theorem

For rings R,S.

1. If ϕ : R→ S is a homomorphism of rings from R onto S then:

R/kerϕ ∼= S

and the isomorphism is given by: kerϕ+ a .→ ϕ (a).

2. If I ▹ R then the map a .→ I + a (∀a ∈ R) is a homomorphism of rings onto R/I and I =kernel of this
homomorphism.

11



2.7. SPECIAL PROPERTIES OF N CHAPTER 2. COMMUTATIVE RINGS

Example 2.6.10 : R[x]/(x2+1) ∼= C.
Why is it true?
We will take the homomorphism from R [x]→ C s.t. f (x) ∈ R [x], f (x)

ϕ.→ f (i). Clearly it is surjective.
Note that: kerϕ = {f ∈ R [x] | f (i) = 0} ⊇

(

x2 + 1
)

. Later we will show that ⊆ as well.

Example 2.6.11 : Z/nZ ∼= Zn =
{

0, 1, . . . , n− 1
}

.

From now on we will assume that all our rings are commutative.

Definition 2.6.12 Domain: A commutative ring R is a domain if ∀a, b ∈ R, a · b = 0 implies a = 0 or b = 0.

Example 2.6.13 : Z,R [x] are domains, but Z
6Z is not! and Z×Z is not a domain as well.

Definition 2.6.14 Principal Ideal Domain (PID): A domain R is a principal ideal domain (PID) if every
ideal is principal.
i.e. of the form Ra for some a ∈ R.

Example 2.6.15 : Z is a PID.
F[x] , F field is a PID (Assignment #1).
but not Z [x] which is a domain.
as the ideal I =integer polynomials with even constant term = (x, 2) = x · Z [x] + 2Z [x].

Claim 2.6.16

I is not principal.

Proof: I is nonempty because x ∈ I. Assume it is principal and f(x) ∈ I is a generator. Then:

f (x)Z [x] = (f (x)) = I

So x is a multiple of f (x), meaning: g (x) f (x) = x for g (x) ̸= 0. So: 1 = deg (g (x) f (x)) ≥ deg f . On the other
hand 2 must be a multiple of f (x), so:∃h (x) f (x) h (x) = 2 . So in fact deg f = 0. and so f (x) =even constant.
But the cannot have g (x) · f = x.

2.7 Special properties of N

Euclidean property:

1. Given any a, b > 0 in N, ∃q, r ∈ N s.t. a = bq + r and 0 ≤ r < b.

2. Given any a, b > 0 in N, there exists their greatest common divisor d ∈ N (denoted gcd (a, b) = (a, b)).
d | a - Means a is a multiple of d .
d | b - Means b is a multiple of d.
And d is greatest integer with respect to that property.

3. Unique factorization to prime numbers.

Remarks 2.7.1 In Z the first property maintains.
The second one as well, only that instead of “greatest integer with respect...” we say that it is the maximum in
sense that any other common divisor d′ also divides d. meaning: d′ | a, b⇒ d′ | d.
There is also the problem that it defines d up to a sign. Meaning that gcd in Z are unique up to a sign ± or up to
a multiple of ±1.

12



CHAPTER 2. COMMUTATIVE RINGS 2.8. UNIT

2.8 Unit

Definition 2.8.1 Unit: A “unit” is an invertible element in a ring.

Remarks 2.8.2 If x = εy and ε is a unit then: ε−1x = y.

Proof: (in Z)

1. For N, pick q to be largest integer s.t. bq < a. and then 0 ≤ r = a− bq < a.
For Z we do the same thing.

2. Given a, b ̸= 0 in Z, we know that Za + Zb is an ideal. But Z is PID, so it must be principal. so
∃d ∈ Z : Za+Zb = Zd .
We shall show: d = (a, b).

a = 1 · a+ 0 · b ∈ Za+Zb = Zd⇒ d | a

Similarly, b ∈ Zd, so d | b.
Suppose now that d′ is also a divisor of a and b. Meaning: d′ | a so a ∈ Zd′ and d′ | b so b ∈ Zd′. Meaning
Za ⊆ Zd′ and Zb ⊆ Zd′. Thus:

Zd = Zz +Zb ⊆ Zd′

d ∈ Zd′ so d′ | d. So d is gcd of a and b.

2.9 Prime, Irreducible and Bézout’s Lemma

A consequence of this is the following lemma:

Lemma 2.9.1 Bézout’s Lemma

Given a, b ∈ Z. If d = gcd (a, b) then there exists u, v ∈ Z s.t. au+ bv = d.

Remarks 2.9.2 gcds exists for any 2 elements in an PID and also Bézout’s lemma as the only property of Z we
used was that it is a PID.

Definition 2.9.3 Prime element: If R is a ring, p ̸= 0 not a unit in R is a prime element if whenever p | a · b
(for a, b ∈ R) then p | a or p | b .

Definition 2.9.4 Irreducible: If R is a ring, x ̸= 0 not a unit in R is an irreducible element if whenever x = a·b
for a, b ∈ R then either a or b is a unit.

Remarks 2.9.5 Prime numbers in Z are prime elements and also irreducible.

Example 2.9.6 : Lets look at Z6. Note that 2 is a prime element. If 2 | a · b in Z6 so ∃x ∈ Z6: 2x = a · b.
So a · b ∈

{

0, 2, 4
}

so one of a or b must be 0, 2, 4 and then 2 | a or 2 | b.
However, 2 is not irreducible, as we have: 2 = 2 · 4 and neither 2 or 4 is a unit!

Claim 2.9.7

If R is a domain then prime⇒irreducible.

Remarks 2.9.8 By the above, we saw that irreducible ̸⇒prime. Although Z6 is not a domain (it has zero divisors),
but it is also true in domain.
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2.9. PRIME, IRREDUCIBLE AND BÉZOUT’S LEMMA CHAPTER 2. COMMUTATIVE RINGS

Proof: Assume p is prime and p = a · b where a, b ∈ R. p | ab so as p is prime: p | a or p | b wlog(without loss of
generality) p | a so ∃u ∈ R s.t. pu = a. So we get:

p = pu · b⇒ p (1− ub) = 0

But R is a domain so as p ̸= 0 we must have 1− ub = 0, meaning 1 = ub, so b is a unit.

Example 2.9.9 : Z
[√
−5
]

=
{

a+ b
√
−5 | a, b ∈ Z

}

. This is a subring of C. This is a domain (as it is a
subring of C).
It contains irreducible that are not prime.

Remarks 2.9.10 It does contain prime elements.

Recall that for any complex number x + iy, x, y ∈ R we have ∥x+ iy∥ =
√

x2 + y2 and if z1, z2 ∈ C we have
∥z1∥ ∥z2∥ = ∥z1z2∥.
In Z

[√
−5
]

if a, b ∈ Z,
∥
∥a+ b

√
−5
∥
∥
2
= a2 + 5b2 positive integer.

Claim 2.9.11
√
−5 is a prime element in Z

[√
−5
]

.

Proof: Assume
√
−5 | r · s so ∃x ∈ Z

[√
−5
]

s.t.
√
−5x = r · s. But:

5 =
∥
∥
√
−5
∥
∥
2
| ∥r · s∥2 = ∥r∥2 · ∥s∥2

So 5 | ∥r∥2 or 5 | ∥s∥2, wlog 5 | ∥r∥2. Writing: r = a+ b
√
−5 we have: 5 | a2 + 5b2 in Z, so 5 | a.

So a = 5a′ for some a′ ∈ Z and we get:

r = 5a′ + b
√
−5 =

︸︷︷︸

in Z
[√
−5

]

√
−5
(

−a′
√
−5 + b

)

So
√
−5 | r.

Claim 2.9.12

2 is an irreducible element in Z
[√
−5
]

which is not prime.

Proof: First, we shall show that it is not a prime.
Note that: 2 · 3 = 6 =

(

1 +
√
−5
) (

1−
√
−5
)

.
We show 2 " 1±

√
−5:

As if 2
(

a+ b
√
−5
)

= 1±
√
−5 for a, b ∈ Z we would have 2a=1 . Impossible.

We shall show 2 is irreducible.
Suppose 2 = r · s, where r, s ∈ R. write r = a+ b

√
−5 where a, b ∈ Z. Using complex norm:

4 = ∥2∥2 = ∥r∥2 · ∥s∥2

since ∥r∥2 , ∥s∥2 are both positive integers we must have either ∥r∥2 = 2 = ∥s∥2 or without loss of generality
∥r∥2 = 1 and ∥s∥2 = 4.
Let’s look at the different cases:
a2 + 5b2 = ∥r∥2 = 2 - There are no a, b ∈ Z satisfying this!
So we must have ∥r∥2 = 1, ∥s∥2 = 4.
If ∥r∥2 = 1 we get a2 + 5b2 = 1⇒ a = ±1 and b = 0. So r = ± and it is a unit.

In a domain Prime⇒Irreducible but not necessarily Irreducible⇒Prime.

Claim 2.9.13

In a PID: Irreducible elements are prime.

14



CHAPTER 2. COMMUTATIVE RINGS 2.10. UNIQUE FACTORIZATION DOMAINS

Remarks 2.9.14 Because PID is also a domain we get Prime⇐⇒ Irreducible.

Proof: Let a be irreducible in a PID R. suppose a | b · c in R where b, c ̸= 0.

We need to show that a | b or a | c. Since R is a PID we have gcd. Denote d = (a, b) . Note that d | a so we can
write a = da′ where a′ ∈ R. Since a is irreducible either d or a′ is a unit.

Case 1: a′ is a unit.

So d = a (a′)−1. so a | d, but we have d | b then a | b.
Case 2: d is a unit.

So dR = R. and by Bézout: R = aR+ bR.

∃u, v ∈ R: 1 = au+ bv ⇒ c = auc+ bvc =
︸︷︷︸

vax=vbc

auc+ vax = a (uc+ vx).

So ∃x ∈ R s.t. ax = bc. So a | c in R .

2.10 Unique Factorization Domains

Definition 2.10.1 Unique factorization domain (UFD): A domain R is a unique factorization domain
(UFD) if every nonzero noninvertible element a ∈ R can be written uniquely (up to ordering of factors and units)
as a product of irreducibles.

Example 2.10.2 : Z (for example: 6 = (−2) (−3) = 3 · 2).
F [x] (field F), F.

Claim 2.10.3

Any PID is a UFD.

We will prove this claim in assignment #2.

Remarks 2.10.4

1. Z
[√
−5
]

is not a UFD (or a PID). As 6 = 2 · 3 =
(

1 +
√
−5
) (

1−
√
−5
)

. So these are two different factoriza-
tions into irreducibles.

2. Z [x] is a UFD. But not a PID!
Meaning, PID⇒UFD but not the other way around.

The following claim is actually a lemma for assignment 2.

Claim 2.10.5

In a PID any increasing chain of ideals stabilizes.

i.e. given a PID R and I1 ⊆ I2 ⊆ I3 ⊆ . . . s.t. Ij ▹R. Then ∃k s.t Ik = Ik+1 = Ik+2 = . . .

Remarks 2.10.6 In Z we have infinite properly decreasing chains of ideals.
For example: 2Z ⊃ 4Z ⊃ 8Z ⊃ 16Z ⊃ . . .

Proof: Define: J =
⋃∞

n=1 In. Note that J ▹ R as if a, b ∈ R there exists Im, Il s.t. a ∈ Im, b ∈ Il. wlog, if m > l
then a, b ∈ Im so a± b ∈ Im , ra ∈ Im for any r ∈ R etc.

Since R is PID then ∃x ∈ R s.t. J = Rx. So x ∈ J . So ∃k s.t. x ∈ Ik. So J = Rx ⊆ Ik ⊆ J . So Ik = J and
Ik+1 = Ik etc.

15



2.11. EUCLIDEAN DOMAINS CHAPTER 2. COMMUTATIVE RINGS

2.11 Euclidean Domains

Definition 2.11.1 Euclidean domains: R is a Euclidean domain if R is a domain and there exists a map (called
a Euclidean norm) δ : R\ {0} → N such that for a, b ̸= 0 in R, ∃q, r ∈ R s.t. a = bq + r and δ (r) < δ (b) and
δ (a) ≤ δ (a · b) for all a, b ̸= 0 in R (or r = 0).

This is Herstein’s definition.

Example 2.11.2 :

1. Z. where δ = |x|.

2. F [x] where δ = deg.

3. F field with δ (a) = 0 for a ̸= 0.

Claim 2.11.3

In a Euclidean domain, every 2 nonzero elements have a greatest common divisor.

Proof: The Euclid’s algorithm.

Let a, b ∈ R where a, b ̸= 0. b = bq1 + r1. Where δ (r1) < δ (b) or r1 = 0.

If r1 = 0 then b = gcd (a, b). If not: b = r1q2 + r2. And here δ (r2) < δ (r1) or r2 = 0.

If r2 ̸= 0 then r1 = r2q3 + r3 where δ (r3) < δ (r2).

And so one...

If rk ̸= 0 for all k, we have an infinite descending sequence of positive integers because δ (r1) > δ (r2) > . . . which
is a contradiction. So ∃k s.t. rk = 0 and gcd can be shown to be rk−1 (if r1 = 0, b is the gcd).

Example 2.11.4 :

1. Z
[√
−5
]

is not an Euclidean domain. As the elements 2
(

1 +
√
−5
)

and 6 have no gcd.

2. Z [x] is a UFD, Not a PID. It is also not Euclidean. Every 2 elements do have a gcd. But Z [x] is not a Bézout
ring, as 1 = (2, x) but have no f (x) , g (x) = Z [x]: 1 = 2f (x) + xg (x).

Claim 2.11.5

If R is a Euclidean domain, then R is a PID.

Proof: Let I ▹R. If I ̸= 0. Let a ∈ I be an element of minimal Euclidean norm.

It is easy to show Ra = I.

Example 2.11.6 : Z [i] = {a+ bi | a, b ∈ Z} is Euclidean. Proof: We choose δ = ∥ ∥2 in C then δ (x+ yi) =
x2 + y2 ∈ N. Let 0 ̸= a, b ∈ Z [i]. We need to show ∃q, r ∈ Z [i] s.t. a = bq + r and r = 0 or ∥r∥2 < ∥b∥2.
ab−1 ∈ Q [i] ⊆ C. So ∃α,β ∈ Q s.t. ab−1 = α+ βi.
Every rational number lies at distance ≤ 1

2 from an integer. So, ∃u, v ∈ Z s.t. ∥u− α∥ ≤ 1
2 and ∥v − β∥ ≤ 1

2 . Let
q = u+ iv, so that:

∥
∥ab−1 − q

∥
∥ ≤

1

2

√
2⇒

∥
∥ab−1 − q

∥
∥
2 ≤

1

2
⇒

∥
∥
∥
∥
∥
∥

a− qb
︸ ︷︷ ︸

r

∥
∥
∥
∥
∥
∥

2

≤
1

2
∥b∥2 < ∥b∥2

r = a− qb ∈ Z [i].

Remaining question: Does PID⇒Euclidean?

We’ve seen examples of rings that are not euclidean, but they were also not PIDs.

The answer to that is actually no, But we will get back to it later.

Let’s look at the following example:

16



CHAPTER 2. COMMUTATIVE RINGS 2.11. EUCLIDEAN DOMAINS

Example 2.11.7 : In Z
[√
−5
]

, The ideal generated by 2 and 1 +
√
−5 is non-principal.

I = 2Z
[√
−5
]

+
(

1 +
√
−5
)

Z
[√
−5
]

As if a · Z
[√
−5
]

= I then 2 ∈ aZ
[√
−5
]

, so a | 2. But we know that 2 is irreducible. So either a = ±2 (wlog,
could be 2 multiplied by invertible element) or a = ±1.
If a = ±2 then 1 +

√
−5 /∈ 2Z

[√
−5
]

so we get a contradiction.
If a = ±1 then I = R which is also a contradiction. Because we can show that there are elements which are not in
I.

So as we said, PID doesn’t mean that the domain is Euclidean. The counter example was found in 1949 by Motzkin.

The ring R = Z
[
1
2 +

√
−19
2

]

is a PID but not Euclidean.

Update: In 2004 it was shown that Z
[√

14
]

is Euclidean.

In fact: it is easy to show Z
[√
−n
]

is Euclidean ⇐⇒ n = 1 or 2.

2.11.1 Constructing gcds

1. In a Bézout(PID) ring we have a, b ∈ R: Ra+Rb = Rd and d = gcd (a, b).

2. In a UFD, we factor a and b to irreducibles, then the gcd = Product of common factors.

3. In a Euclidean domain we use Euclid’s algorithm.

Example 2.11.8 : R = Z
[

x, x
2 ,

x
3 ,

x
4 , . . .

]

= xQ [x] +Z. This is a subring of Q [x].
It turns out that this subring has some interesting properties.
It’s clear that R ̸= Q [x] as 1

2 /∈ R. It’s easy to prove that this is a ring.
Notice that n | x for every integer n. Because: x =

(
x
n

)

· n. Meaning that x has no decomposition into a product
of irreducibles.
R is not a PID. e.g. if we take ideal I generated by

{

x, x
2 ,

x
3 , . . .

}

(I = xQ [x]) - it is not principal (and is not R!).
Any polynomial will have 0 constant term.
Clearly, any element that could be a generator would have degree ≥ 1 and ∃n s.t. x

n /∈ (f (x)) and deg f ≥ 1.

Remarks 2.11.9 Any finitely generated ideal in R is principal!

R is not a UFD.
x has no factorization to irreducibles as: n | x for all 0 ̸= n ∈ Z. x is infinitely divisible.

12/11/2013

Summing up:
Euclidean −→

✟✟←−
PID −→

✟✟←−
UFD

Definition 2.11.10 Bézout domain: Domain in which every 2 nonzero, non-units a, b have a gcd d, ∃u, v in
ring d = au+ bv.

Remarks 2.11.11 At the last example, R is a Bézout domain.

And it maintains that:
PID −→

✟✟←−
Bézout←−

✟✟−→
UFD
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Chapter 3

Chinese Remainder Theorem

3.1 History

The following problem was posed by Sunzi [Sun tsu] (4th century AD) in the book Sunzi Suanjing:

An old women goes to market and a horse steps on her basket and crashes the eggs.The rider offers
to pay the damages and asks her how many eggs she had brought .She does not remember the exact
number,but when she had taken them out two at a time ,there was one egg left.The same happened
when she picked 2,3,4,5,6 at a time, but when she took seven at a time they came out even.What is the
smallest number of eggs she could have had?

Solution: x must be 2 ( mod 3) , 3 ( mod 5) and 2 ( mod 7)

We can take x = 23 for example.

Oystein Ore mentions a puzzle with a dramatic element from Brahama-Sphuta-Siddhanta (Brahma’s Correct Sys-
tem) by Brahamgupta (born 398 AD):

An old woman goes to market and a horse steps on her basket and crashes the eggs. The rider offers
to pay for the damages and asks her how many eggs she had brought. She does not remember the exact
number, but when she had taken them out two at a time, there was one egg left. The same happened
when she picked them out three, four, five, and six at a time, but when she took them seven at a time
they came out even. What is the smallest number of eggs she could have had?

3.2 CRT in Z

The conditions to the Chinese Remainder Theorem in Z:

Let n1, . . . , nk be pairwise mutually prime, i.e.: ∀i ̸= j : (ni, nj) = 1.

And r1, . . . , rk ∈ Z be arbitrary elements. Then there exists x ∈ Z s.t. x ≡ ri ( mod ni) for 1 ≤ i ≤ k.

Example 3.2.1 : n1 = 3, n2 = 5, n3 = 14.
r1 = 4, r2 = 4, r3 = −3
Then:

x ≡ 4 ( mod 3)

x ≡ 0 ( mod 5)

x ≡ −3 ( mod 14) ≡ 11 ( mod 14)

So:
x = 25 + k · 3 · 5 · 14 ∀k ∈ Z
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3.3. CRT FOR A COMMUTATIVE RING R CHAPTER 3. CHINESE REMAINDER THEOREM

3.3 CRT for a commutative ring R

The conditions to the Chinese Remainder Theorem in R:

Theorem 3.3.1 Chinese Remainder Theorem

Let I1, . . . , In be pairwise coprime ideals in R, i.e.: ∀k ̸= j : Ik + Ij = R.
Note that in Z:

Zni
+Znj

= Z

So these are pairwise coprime ideals. So this condition is the same for the one in Z.
And a1, . . . , an ∈ R arbitrary then there exists x ∈ R:

x ≡ ak ( mod Ik) ∀1 ≤ k ≤ n

3.4 Proof

Proof:

1. For n = 2:
We have:

I1 + I2 = R

So ∃bj ∈ Ij : b1+ b2 = 1⇒

{

b1 ≡ 1 ( mod I2)

b2 ≡ 1 ( mod I1)
. Take x to be x = a2b1+ a1b2. If we will look at mod I1

of x we get:
x ≡ a2b1

︸︷︷︸

∈I1

+a1b2 = a1b2 ≡ a1 · 1 ≡ a1 ( mod I1)

And similarly:
x ≡ a2 ( mod I2)

2. For arbitrary n > 2:
We need to define the product of ideals:
Let I and J be ideals:

{ab | a ∈ I, b ∈ J} = A

Clearly R ·A ⊆ A.
But A is not necessarily closed under addition.
Define product of ideals I · J =additive subgroup generated by {ab | a ∈ I, b ∈ J}. Then I · J is an ideal.

Example 3.4.1 : I = 3Z, J = 5Z. In this case, the product itself is an ideal. We get:

I · J = 15Z

Remarks 3.4.2 Note that we always have:
I · J ⊆ I ∩ J

But is it equal? In the example it is. But it’s not always the case.

Example 3.4.3 : I = 2Z, J = 2Z. I · J = 4Z but I ∩ J = 2Z.

Remarks 3.4.4 But if pZ, qZ where p, q are distinct primes, then pZ · qZ = pZ ∩ qZ.

So, if I1 + Ik = R for all k ≥ 2. For each k ≥ 2 we can find ck ∈ I1, bk ∈ Ik s.t.:

ck + bk = 1
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Look at:

1 =
n
∏

k=2

(ck + bk) = sums of multiples of ck
︸ ︷︷ ︸

I1

+ b2 · b3 · . . . · bk
︸ ︷︷ ︸

∈I2·...·Ik=J1

So I1 and J1 are mutually coprime ideals. Then: ∃y1 ∈ R

{

y1 ≡ 1 ( mod I1)

y1 ≡ 0 ( mod J1)
. By the case for n = 2:

y1 ∈ J1 ⊆ I2 ∩ I3 ∩ . . . ∩ In, So y1 ≡ 0 ( mod Ik) for 2 ≤ k ≤ n.
In a similar way for i we can show I1 and Ji =

∏

k ̸=i
Ik are mutually prime, and find yi ∈ R s.t.:

yi ≡ 1 ( mod Ii)

yi = 0 ( mod Ji)

and so also yi ≡ 0 ( mod Ik) ∀k ̸= i.
Define x = a1y1 + a2y2 + . . .+ anyn . For any k:

yi ≡ 0 ( mod Ik) ∀i ̸= k

So:
x ≡ akyk ( mod Ik) ≡

︸︷︷︸

yk≡1( mod Ik)

ak ( mod Ik)

Remarks 3.4.5 Any element of coset x+ I1 · I2 · · · · · In will also satisfy all our congruences.

Corollary 3.4.6

Let R be a commutative ring, I1, . . . , In pairwise coprime ideals.
Then:

R/(I1∩...∩In) ∼= (R/I1)× . . .× (R/In)

In particular: Let m ∈ Z and m = pr11 · . . . · prnn , pi distinct primes, ri ≥ 1. Then:

Z/mZ ∼= (Z/pr1
1 Z)× · · ·× (Z/prn

n Z)

This is in fact equivalent to the CRT for Z. Proof: We define a ring homomorphism from R onto (R/I1)×. . .×(R/In).

a
ϕ.→ (I1 + a, I2 + a, . . . , In + a)

Check to verify this ϕ is a ring homomorphism.

kerϕ = {a | (I1 + a, I2 + a, . . . , In + a) = (I1, I2, . . . , In)} = I1 ∩ . . . ∩ In

To show isomorphism in the corollary, it remains only to show ϕ is surjective (and then the corollary follows by the
homomorphism theorem).

Let (I1 + a1, . . . , In + an) ∈ (R/I1)× . . .× (R/In) arbitrary ai ∈ R. We want a ∈ R s.t ϕ (a) = (I1 + a1, . . . , In + an).
i.e. such that:

I1 + a = I1 + a1

I2 + a = I2 + a2
...

In + a = In + an
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But that means:

a ≡ a1 ( mod I1)

...

a ≡ an ( mod In)

The existence of such an a is guaranteed by the CRT.

3.5 Application to Public-Key codes

RSA in 1976

The idea of public-key is: you encode publicly, but the decoding is secret!

Let p1, p2 be two “very large” primes.

Remarks 3.5.1 In 2008 a merssen prime with 12.9 million digits was the largest prime number known. This year
(2013) a new prime was found with 17.4 million digits.

Let d = p1 · p2. Factoring d without knowledge of p1, p2 is considered computationally (practically) impossible.

Led e = (p1 − 1) (p2 − 1) = p1p2 − p1 − p2 + 1 = ϕ (d) (Where ϕ is the Euler function).

Pick r to be any large integer prime to e. By Bézout, exists s, t ∈ Z s.t. sr + te = 1, sr ≡ 1 ( mod e).

Remarks 3.5.2 (Z/mZ)∗ = Multiplicative group of units in Z/mZ.

We publish d and r but not e, p1, p2 and s.

Encode: a ∈ Z message and assume a < d. So we encode as: ar ( mod d) ≡ b

Claim 3.5.3

bs ( mod d) ≡ a

So decode by calculating bs ( mod d). Proof:

Case 1: (a, d) = 1. Easy.

Case 2: (a, d) ̸= 1

wlog assume (a, d) = p1 and (a, p2) = 1. And look at:

Z/dZ ∼= Z/p1Z× Z/p2Z

and use CRT.

(Leave as exercise!).

Remarks 3.5.4 In order to do this, we need:
Let G be a finite group, the order of G = |G| = # of elements in G. Then for all x ∈ G, xn = 1.
In particular: G = (Z/pZ)∗ where p is a prime (|G| = p− 1). Then for any a ̸= 0 in Z:

(a+ pZ)p−1 = 1 + pZ

or:
ap

−1

≡ 1 ( mod p)

This is Fermat’s Little Theorem.

So if d = p1p2 then:
(Z/dZ)∗ = set if units in Z/dZ = {a+ dZ | (a, d) = 1}

∣
∣(Z/dZ)∗

∣
∣ = ϕ (d) = # of positive integers prime to dand smaller than d = (p1 − 1) (p2 − 1) = e

So that for x+ dZ in (Z/dZ)∗, (x+ dZ)e = 1 + dZ by out claim. Or equivalently: xe ≡ 1 ( mod d).
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Chapter 4

Groups

4.1 Subgroup

Let H be a subgroup of a group G (Subgroup is a subset of the group G which is closed in respect to the operation
of G).

Ha, a ∈ G is a coset of H in G.

Claim 4.1.1

If Ha ∩Hb ̸= ∅ then Ha = Hb.

Proof: If ha = h′b ∈ Ha ∩Hb where h, h′ ∈ H . Then: (h′)−1 ha = b Thus: Ha ⊇ Hb.

Similarly a = h−1h′b, So Ha ⊆ Hb. Thus: Ha = Hb.

Remarks 4.1.2 Ha = Hb ⇐⇒ ba−1 ∈ H . (Proof by easy verification).

4.2 Normal Subgroup

Definition 4.2.1 Normal Subgroup: A subgroup N of G is normal if Na = aN for all a ∈ G.
The notation is: N ▹G.

Equivalently we can say that Na = a−1Na = N for all a ∈ N .

Remarks 4.2.2 a /∈ N , Na is not a subgroup as 1 /∈ N . But Na is a subgroup. It’s easy to show:
(

a−1na
) (

a−1n′a
)

= a−1nn′a ∈ a−1Na. And the inverse is easy to show as well.

4.2.1 Quotient groups

We want to look at the set: G/N = {Na | a ∈ G}. And define an operation so it will be a group.

Definition 4.2.3 Na ·Nb = Nab.

One has to show that:

1. The operation is well defined. Meaning that if one takes different representatives, one shall receive the same
cosets.

2. This multiplication defines a group called the quotient group G/N.

Example 4.2.4 : If G is commutative (=abelian), Then every subgroup is normal.

Definition 4.2.5 Simple Group: A group with no nontrivial normal subgroup (̸= 1, G) is called simple.
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4.3 Homomorphism Thm.

Definition 4.3.1 Homomorphism: A homomorphism of group ϕ : G → H is a map sat. ∀a, b ∈ G : ϕ (ab) =
ϕ (a) · ϕ (b).

Remarks 4.3.2 We can show easily that if ϕ is homomorphism then ϕ (1G) = 1H .

There are many homomorphism theorems, But we will only give one (The first).

Theorem 4.3.3 Homomorphism Thm

Let G,H be group and ϕ : G→ H be a surjective homomorphism.
Then if kerϕ = {g ∈ G | ϕ (g) = 1H}.
Then kerϕ ▹G and: G/kerϕ ∼= H .

Moreover, every normal subgroups gives a homomorphism to some H .

Notation: If G/N is finite: order of the group G/N = |G/N| = # cosets of N in G = |G : N | =”index of N in G”.

Example 4.3.4 :

1. G = GL (n, F ), F field. This is the set of n× n matrices over F of det ̸= 0. Called the general linear.
We can define ϕ : G → F ∗ =multiplication group of the filed = F\ {0}, by ϕ (A) = detA. (ϕ (AB) =
det (AB) = detAdetB = ϕ (A)ϕ (B)).

It’s easy to see that ϕ is surjective as if x ∈ F ∗ then we take: det

⎛

⎜
⎜
⎜
⎝

x 0
1

. . .
0 1

⎞

⎟
⎟
⎟
⎠

= x.

Now, note that: kerϕ = {A ∈ GL (n, F ) | detA = 1} = GL (n, F ) (special linear). By the homomorphism
thm. SL (n, F ) ▹GL (n, F ) and:

GL(n,F )/SL(n,F ) ∼= F ∗

2. Suppose H is a subgroup of G and |G : H | = 2 then H ▹G.
If |G : H | = 2 there are 2 cosets, H and Ha where a /∈ H .
So G = H ·∪Ha so Ha = G\H . Similarly G = H ·∪aH so aH = G\H . and so Ha = aH (of course
Hh = hH = H for any h ∈ H).

3. G = Sn symmetric group (= group of all permutations on {1, 2, . . . , n}). σ ∈ Sn,

sgn (σ) =

{

1 if number of pairs of indices i,j s.t. i<j but σ (i)>σ (j) is even .

−1 Otherwise.

If sgn (σ) = 1 we say σ is even, if sgn (σ) = −1 we say σ is odd
We have sgn (στ) = sgnσ · sgnτ ∀σ, τ ∈ Sn. Look at ϕ : G → {±1} defined as ϕ (σ) = sgn (σ). ϕ is onto as
σ (I) = 1 and if σ switches only 1&2 then σ is odd.
So Sn/kerϕ ∼= {±1}. kerϕ = Set of even permutations

︸ ︷︷ ︸

An

▹G called the alternating group.

4.4 Cyclic groups

Definition 4.4.1 Cyclic group: G is a cyclic group if ∃x ∈ G s.t.:

G =
{

xk | k ∈ Z
}

=
︸︷︷︸

Notation

⟨x⟩ = group generated by x

Example 4.4.2 : G = ⟨Z,+, 0⟩ is an inf. cyclic additive group generated by 1 (or −1).

G = {k · 1 | k ∈ Z}
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In fact, every cyclic infinite group is isomorphic to Z.

Suppose G is infinite cyclic generated by x, define ϕ (x) = 1. ϕ
(

x2
)

= ϕ (x) + ϕ (x) = 2 etc.

Remarks 4.4.3 ϕ
(

xk
)

= k so ϕ is surjective.

We note that xk ̸= xl for k ̸= l wlog k > l. As if: xk = xl then xk−l = 1. Then the set {xn | n ∈ Z} would be
finite. As x is an element of finite order. Which is a contradiction as G is infinite cyclic. Clearly ϕ is therefore also
1-1.

Remarks 4.4.4 ϕ is homomorphism, them ϕ is 1-1 ⇐⇒ kerϕ = {1}.

In our case if xm ∈ kerϕ then ϕ (xm) = 0. Then m = 0. So, xm = 1.

Claim 4.4.5

Every subgroup H of a cyclic group G is cyclic.

Proof: Suppose that G = ⟨x⟩, If H = {1} we are done. Now assume H ̸= {1}.
Let k be the smallest positive integer s.t. xk ∈ H . (If xn ∈ H then x−n ∈ H !). Clearly

〈

xk
〉

∈ H .

Now let h ∈ H . ∃n ∈ Z s.t. h = xn. We can write: n = kq + r where 0 ≤ r < k. h = xn = xkq · xr. But
x−kqh = xr ∈ H . So by choice of k, r = 0 and n = kq and H ⊆

〈

xk
〉

. So H =
〈

xk
〉

as required.

4.5 Lagrange’s Thm.

Theorem 4.5.1 Lagrange’s Thm

If G is finite, H is subgroup of G, then |H | | |G|.

Proof: For all a ∈ G, |Ha| = |H |. So G = disjoint union of n cosets all of size |H |. So |G| = n |H | so |H | | |G|.

Remarks 4.5.2 Note also: n = |G : H | also divides |G|. And |G : H | = |G|
|H| .

Remarks 4.5.3 If N ▹G then |G/N| = |G : N | = |G|
|N | .

Corollary 4.5.4

If |G| = n then xn = 1 for all x ∈ G.

Proof: Look at H = ⟨x⟩. This is a subgroup of G, m = |H | | |G| and |H | = smallest k s.t. xk = 1. But m | n sot
xn = 1.

From this fact we deduced Fermat’s little thm:
Theorem 4.5.5 Fermat’s Little Thm.

ap−1 ≡ 1 ( mod p) for any (a, p) = 1 in Z.

Proof: As
∣
∣(Z/pZ)∗

∣
∣ = p− 1

Claim 4.5.6

If G is finite cyclic of order n. Then, for every k | n there exists a unique subgroup H of order k.

Remarks 4.5.7 This is not true for tributary finite groups. Or even for arbitrary abelian finite groups.

Proof: Suppose G = ⟨x⟩. If k = 1 we are done. Now assume k > 0. Clearly
〈

x
n
k

〉

is a subgroup of order k. Now
suppose H is a subgroup of order k, we want to show that H =

〈

x
n
k

〉

. By a previous claim we showed that H is
cyclic, so exists t > 0 s.t. H = ⟨xt⟩. We know that xtk = 1, So n | tk and k | n is given. So ∃k′ n = k · k. Meaning:

k · k′ | t · k ⇒ k′ | t. So xk ∈
〈

xk′

〉

=
〈

x
n
k

〉

. Clearly H ⊆
〈

x
n
k

〉

. But both are finite sets of order k, so they are

equal.
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4.6 Fundamental Thm. of finite abelian groups

If we have a finite abelian group, It’s structure is determined.

Theorem 4.6.1

If G is finite abelian of order n, then G is of the form: G = Cn1 × Cn2 × . . .× Cnk
where Cni

is cyclic of order ni

and
k∏

i=1
ni = n.

Example 4.6.2 : G = C4 × C2.
Note that G has a subgroup isomorphic to C4 and a subgroup isomorphic to C2 ×C2, both of order 4 but they are
not isomorphic.
In fact, for finite abelian groups, if k | |G|, G contains a subgroup of order k.

It is easy to characterize all group of order 1,2,3,4 (It can be shown that every group of order 4 is abelian, we know
that the two possibilities are C2 × C2 and C4),5 (prime...), 6 (C6 and S3), 7 (prime).

But we want to talk about 8. We want to characterize all groups of order 8 up to isomorphism.

Abelian cases:

• C8

• C4 × C2

• C2 × C2 × C2

Non-abelian case:

Remarks 4.6.3 In any group G, if a2 = 1 for all a in the group the group is abelian.
Suppose a, b ∈ G. So (ab)2 = 1. abab = 1. a = a−1, b = b−1 (as a2 = 1 = b2)
So ab = b−1a−1 = ba.

Suppose now G is non-abelian of order 8. By the above, not every element satisfies x2 = 1 and have no element of
order 8. So, we must have an element a of order |⟨a⟩| = 4 and ⟨a⟩ ▹G.

Let b /∈ ⟨a⟩. Note that G = ⟨a, b⟩ as G = N ∪Nb.

If b−1ab = 1 then ab = b and a = 1 but |⟨a⟩| = 4, hence a contradiction.

If b−1ab = a then a and b commute and G is abelian.

If b−1ab = a2 then
(

b−1ab
)2

= a4 = 1. But
(

b−1ab
)2

= b−1a2b = 1, Hence a2 = 1, contradiction.

So we are left with only: b−1ab = a3 = a−1. Turns out that there exactly 2 options:

1. b is of order 4. Then: G =
〈

a, b | a4 = 1, a2 = b2, b−1ab = a−1
〉

and G ∼= Q8 = {±1,±i,±j,±k} quaternion
group where ij = k, i2 = j2 = k2 = −1.

2. b is of order 2. Then: G =
〈

a, b | a4 = b2 = 1, b−1ab = a−1
〉

= D8 dihedral group of order 8 = Group of
symmetric of a square.
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Chapter 5

Field Theory

5.1 Algebraic extension

Algebraic extension of fields, F ⊆ K filed.

Definition 5.1.1 Algebraic element: α ∈ K is algebraic over F if α is the root of a polynomial in F [x].

Definition 5.1.2 Algebraic Field: K is algebraic over F if every element of K is algebraic over F .
Notation: K/F

Example 5.1.3 :

1. Q ⊆ C - i is algebraic as a root of x1 + 1.

2. Q ⊆ R -
√
2 is algebraic over Q, root of x2 − 2, and any element in Q is algebraic over Q, root of x− r.

α =
3
√

7 + 17
√
8 algebraic over Q.

α3 = 7 + 17
√
8⇒ α3 − 7 = 17

√
8⇒

(

a3 − 7
)17

= 8

But note that
(

x3 − 7
)17 − 8 is polynomial over Z and α is a root.

Definition 5.1.4 Transcendental Element: Any element which is not algebraic, is called transcendental.

Example 5.1.5 : Famous examples for transcendental elements in R are: π, e (Proof: Lindemann’s thm.).

For any α over F , we can construct F (α) =smallest field containing F and α. F [α] =smallest ring that contains
F and α.

If α is transcendental over F :

f (α) =

{
f (α)

g (α)
| f, g ∈ F [α]

}

= field of rational functions in α.

In Assignment #3 we will prove the following claim:

Claim 5.1.6

F (α) = F [α] ⇐⇒ α is algebraic over F .

5.2 Basic Extension Thm.
Theorem 5.2.1 Basic extension thm.

Let p (x) ∈ F [x] be irreducible, Then there exists a field K ⊃ F in which p (x) has a root. If K is a minimum w.r.t
this property, then K is unique up to isomorphism.
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Proof: Let K = F [u]/p(u)F [u] , u is indeterminate variable.

We can regard F ⊆ K by identifying elements a of F with a+ (p (u)).

Denote I = (p (u))

K is a field, because suppose we have g (u) = F [u], g (u) /∈ I so (g (u) , p (u)) = 1. By Bézout, we have r (u) , s (u)
such that:

g (u) r (u) + p (u) s (u) = 1

Then:

(g (u) + I) (r (u) + I) = 1 + I

So g (u) + I has an inverse in K.

So K is a field as required. We now want to show that p as a root in K. Look at:

p (x) =
∑

aix
i ai ∈ F

We show that u+ I is a root of p (x).

p (u+ I) =
∑

ai (u+ I)i =
∑

aiu
i

︸ ︷︷ ︸

p(u)

+I = I ≡ 0 in K

As required. It remains to show that K is unique up to isomorphism.

Suppose K ⊇ F field and ∃c ∈ L s.t. p (c) = 0. Construct a map from K → L as follows:

g (u) + I .→ g (c)

For any g ∈ F [u]. g (c) ∈ L because L ⊇ F and the coefficients of g are in F .

We need to show that this map is well-defined and that it is a field monomorphism. We will show that it is
well-defined:

Suppose g (u)+I = g′ (u)+I , then g (u)−g′ (u) ∈ I and so it is a multiple of p (u) . So g (c)−g′ (c) = p (c)·(. . .) = 0.
Meaning: g (c) = g′ (c).

Example 5.2.2 : Q[x]/(x2−2) = Q
(√

2
)

In fact, it is easy to show here that Q
(√

2
)

= Q
[√

2
]

. For any polynomial f ∈ Q [x] have:

f (x) = q (x)
(

x2 − 2
)

+ r (x)

(deg r ≤ 1).

So f (x) + I = r (x) + I. So we map ax+ b+ I
∼=.→
φ

a
√
2 + b, where a, b ∈ Q.

ϕ [(ax+ b+ I) (cx+ d+ I)] = ϕ
[

acx2 + (ad+ bc)x+ bd+ I
]

≡
︸︷︷︸

mod I

ϕ [(ad+ bc)x+ (2ac+ bd) + I]

(

a
√
2 + b

)(

c
√
2 + d

)

= 2ac+ bc
√
2 + ad

√
2 + bd = ϕ (RHS)

Remarks 5.2.3 Q
(√

2
)

contains both roots of x2 − 2, so x2 − 2 factors completely over Q
(√

2
)

.

By field theory, there is no difference between
√
2 and −

√
2, we could use both just the same.

Example 5.2.4 : R/(x2+1) ∼= C.
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5.3 Splitting field

Definition 5.3.1 Splitting Field: A splitting field for a polynomial f (x) ∈ F [x] is the minimal field extension
of F over which f (x) factors to linear factors.

In the previous sections, we show two samples of a splitting fields. We will see an example of an extension which is
not splitting field:

Example 5.3.2 : Look at x3 − 2 over Q. Construct: K = Q[x]/(x3−2) contains a root of x3 − 2: 3
√
2. Assume

this is the real root. We want to factor over K:

x3 − 2 =
(

x− 3
√
2
)(

x2 + 3
√
2x+ 3

√
2
2
)

But the second term,
(

x2 + 3
√
2x+ 3

√
2
2
)

, is irreducible over K as the remaining 2 roots are non-real.

− 3
√
2±

√
(

3
√
2
)2 − 4

(
3
√
2
)2

2
=
− 3
√
2± i 3

√
2
√
3

2
/∈ K

So K is not a splitting field for x3 − 2.
We can do the extension once more, and get an splitting field of the polynomial.

Theorem 5.3.3

Given a polynomial f (x) over a field F , there exists an extension field K of F which is a splitting field for f (x)
and it is unique up to isomorphism.

Proof: If f (x) factors completely over F , then F is a s.f. (splitting field).

Using the Basic Extension Thm, extend F (if necessary) to K1, containing root a1 of f (x) and then over K1:
f (x) = (x− a1) f1 (x), where f1 (x) ∈ K1 [x] and deg f1 < deg f .

Repeat until we have a full factorization of f (x), since deg f is finite, the process is finite.

Remarks 5.3.4 In the proof we used the fact that if f (a) = 0 then (x− a) | f (a).
Over a field F , a is a root of f (x) ⇐⇒ x − a | f (x) over F . This is follows from dividing f (x) by x − a with
remainder:

f (x) = q (x) (x− a) + r

But r is a constant because 0 = f (a) = q (x) (a− a) + r ⇒ r = 0.
By consideration of degree, it follows that the number of roots of f (x) ≤ deg f .
Over rings, we can gave polynomials with more roots than the degree, we will see it in future assignment.

5.4 Characteristic

Definition 5.4.1 Characteristic: In a field F , if ∃n ∈ N, n > 0 s.t.

1 + · · ·+ 1
︸ ︷︷ ︸

ntimes

= 0

We say F has finite characteristic.

It is easy to show that the smallest such n must be prime:

Lemma 5.4.2

The characteristic of F , charF , is a prime number.

Proof: If n = mk, 1 < m, k < n
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(1 + . . .+ 1)
︸ ︷︷ ︸

mtimes

(1 + . . .+ 1)
︸ ︷︷ ︸

ktimes

= 1 + . . .+ 1
︸ ︷︷ ︸

ntimes

= 0

So (1 + . . .+ 1)
︸ ︷︷ ︸

mtimes

= 0 or (1 + . . .+ 1)
︸ ︷︷ ︸

ntimes

= 0 contradiction of minimality of n.

If no such n exists we say F is of characteristic 0.

5.5 Prime field of F

Denote F0= smallest subfield contained in F= intersection of all subfields of F . 0, 1 ∈ F0.

1 + 1 ∈ F0

1 + 1 + 1 ∈ F0

1 + 1 + 1 + 1 ∈ F0

Notation: n = 1 + . . .+ 1
︸ ︷︷ ︸

ntimes

∈ F .

Case 1: charF = 0. In that case: n ̸= m for all n ∈ N, so F0 contains a copy of N. Similarly −n ∈ F0 for all
n ∈ N so F0 contains a copy of Z.

Similarly, F0 must contain all elements of type n,m ∈ N, m ̸= 0, nm−1 So F0
∼= Q.

Case 2: charF = p where p is a prime. Look at:

{

0, 1, 2, 3, . . . , p− 1
}

⊆ F0

It is easy to show that:
{

0, 1, 2, 3, . . . , p− 1
} ∼= Z/pZ

e.g.
(1 + 1) (1 + 1 + 1) = (1 + 1 + 1 + 1 + 1 + 1)

2 · 3 = 6

Distributivity.

Corollary 5.5.1

Every field contains a prime field isomorphic either to Q or to Z/pZ for same prime p.

5.5.1 Some more facts

Definition 5.5.2 If α is algebraic over a field F , Then the monic polynomial of minimal degree, p (x) ∈ F [x] s.t.
α is a root of p is called the minimal polynomial of α.

• Minimal polynomials are unique and irreducible.

Lemma 5.5.3

If α is a root of f (x) ∈ F [x], then p (x) | f (x) over F .
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Proof: If we write:
f (x) = p (x) q (x) + r (x)

Then:deg r < deg p or r ≡ 0. Substitute α and we get:

0 = f (α) = p (α) q (α) + r (α)

So α is a root of r (x) - contradicting the minimality of degree of p (x). So r = 0 and p (x) | f (x).

Claim 5.5.4

If p (x) ∈ F [x] irreducible. K = F [x]/(p(x)), Then K is a vector space of dimension deg p (x) over F .

Remarks 5.5.5 In general, if F ⊆ K fields, then K is a vector space over F . The main concept here is that the
dimension of K over F is deg p (x).

Remarks 5.5.6 p (x) is minimal polynomial of x+ I (I = p (x)) over F .

Proof: The cosets determine by 1, x, x2, . . . , xn−1 are linear independent over F and span K.

Notation: |K : F | = dim of K over F as a vector space.

Corollary 5.5.7

If F ⊆ K fields and |K : F | =finite. Then K/F is an algebraic extension.

Proof: Let α ∈ K, Look at the set:
1,α,α2,α3, . . .

As |K : F | = n, then 1,α,α2,α3, . . . ,αn must be linear dependent set over F . i.e. ∃ai ∈ F not all 0 s.t.
n∑

i=0

aiα
i = 0

and then α is a root of
∑

aixi.

5.6 Galois group

Definition 5.6.1 If K ⊇ F fields,

Gal (K/F) = Galois group of Kover F = Set of all automorphisms of Kthat fix every element of F

ϕ : K → K automorphism. ϕ (a) = a, ∀a ∈ F .
Gal (K/F) is a group.

Example 5.6.2 : ϕ ∈ Gal (C/R) then:

ϕ (a+ ib) = ϕ (a) + ϕ (i)ϕ (b)

But ϕ fixes R element-wise then:
= a+ ϕ (i) b

But what ϕ (i) equals to? Note that:

ϕ (i)ϕ (i) = ϕ
(

i2
)

= ϕ (−1) = −1

So ϕ (i) is a square root of −1, hence ϕ (i) = ±i.
If ϕ (i) = i then ϕ = Id. If ϕ (i) = −i then ϕ= Complex conjugation.

z
ϕ.→ z

Gal (C/R) ∼= C2 = ⟨ψ⟩, ψ2 = Id.
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5.7 Separable Polynomial

Galois group of polynomial over a field F = Galois group of the s.f. of the polynomial over F.

Example 5.7.1 : x3 − 2 over Q, The splitting field is Q
(

3
√
2, i
√
3
)

because the roots (other than 3
√
2) are:

3
√
2

(

−1± i
√
3

2

)

The Galois group of x3 − 2 over Q is: GalQ(
3√2,i
√
3)/Q.

Galois theory gives a 1-1 correspondence between “normal subfields” of K/F (algebraic extension) and a normal
subgroup of Gal (K/F).

Definition 5.7.2 Separable polynomial: A polynomial is called separable if its irreducible factors have distinct
roots.

Remarks 5.7.3 This is always the case in char 0 but not in char p. An example will be in assignment 4.

5.8 Galois Extension

Definition 5.8.1 Galois Extension: A Galois Extension of a field is an algebraic extension which is the splitting
field of a separable polynomial.

Theorem 5.8.2 Galois

If E/F is a Galois Extension then:
|Gal (E/F)| = |E : F | = dimF E

Example 5.8.3 : E = Q
(

3
√
2, i
√
3
)

, F = Q.

|E : Q| =
∣
∣E : Q

(
3
√
2
)∣
∣
∣
∣Q
(

3
√
2
)

: Q
∣
∣, But we already know that:

∣
∣Q
(

3
√
2
)

: Q
∣
∣ = 3. But what is:

∣
∣E : Q

(
3
√
2
)∣
∣? We

know that ±i
√
3 are the roots of x2 + 3 which is irreducible over Q

(
3
√
2
)

, Thus:
∣
∣E : Q

(
3
√
2
)∣
∣ = 2. So:

∣
∣Gal

(
Q( 3√2,i

√
3)/Q

)∣
∣ = 6

Remarks 5.8.4 If ϕ is an automorphism of E then ϕ (2) = 2 (because 2 ∈ Q, and we are talking about automor-

phisms that fix every element of Q). So if ϕ
(

3
√
2
)

= ξ, then: ϕ (2) =
(

ϕ
(

3
√
2
))3

= ξ3. In other words: ξ must be

one of the cubed root of 2 in E: 3
√
2 or 3

√
2
(
−1±i

√
3

2

)

. So ϕ permutes these roots.

There are 3 roots an 6 automorphisms, and the image of the roots fixed automorphism (as every element is a
polynomial in the 3 roots with coefficients in Q) ⇒ The automorphisms group must therefore be the full group of
permutations on the 3 roots. Thus: Gal (E/F) ∼= S3.

Claim 5.8.5

If ϕ is an automorphism of some extension field of Q, then ϕ fixes Q element-wise.

Proof: ϕ (1) = 1, so ϕ (1 + 1) = 1+1 = 2. Inductively ϕ (n) = n for all n ∈ N. By the additivity of homomorphisms.

But also: ϕ (−n) = −ϕ (n) = −n (as ϕ (n+ (−n)) = ϕ (0) = 0) so ϕ fixes Z element-wise.

For 0 ̸= n ∈ Z, ϕ
(

n−1
)

= ϕ (n)−1 (as 1 = ϕ (1) = ϕ
(

n−1n
)

= ϕ
(

n−1
)

ϕ (n). So for p
q ∈ Q for p, q ̸= 0 ∈ Z we get:

ϕ

(
p

q

)

=
ϕ (p)

ϕ (q)
=

p

q

Similarly, if ϕ automorphism of an extension of Z/pZ, it fixes Z/pZ element-wise.
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Claim 5.8.6

K,F are fields, If f (x) ∈ F [x] and K ⊇ F contains a root of F . Then Gal (K/F) permutes the roots of f in K.

Proof: Suppose α is a root of f in K and ϕ ∈ Gal (K/F) , f (α) = 0 so ϕ (f (α)) = 0.

But note that if f (x) =
∑

aixi, then:

ϕ (f (α)) = ϕ
(∑

aiα
i
)

=
︸︷︷︸

Additivity

∑

ϕ
(

aiα
i
)

=
︸︷︷︸

Fixing F

∑

aiϕ
(

αi
)

=
∑

aiϕ (α)i

So ϕ (α) is a root of f .

Corollary 5.8.7

If K is a s.f. of some polynomial f (x) over F then as K is generated over F by roots of f (x) and these roots are
permuted by Gal (K/F), we have that the images of the roots determine the automorphisms. And Gal (K/F) can be
considered a subgroup of the group of permutations on the set of roots.

Example 5.8.8 : ϕ ∈ Gal
(
Q( 3√2)/Q

)

, The elements of Q
(

3
√
2
)

are of the form: a+b 3
√
2+c

(
3
√
2
)2

for a, b, c ∈ Q.

But ϕ
(

3
√
2
)

= 3
√
2 as Q

(
3
√
2
)

contains only one root of x3 − 2 . So ϕ = Id.

Example 5.8.9 : f (x) = x4 − 2 over Q.
The roots are: ± 4

√
2, ±i 4

√
2. (We can write: x4− 2 =

(

x2 −
√
2
) (

x2 +
√
2
)

, The first two roots are the roots of the
first term, and the later are for the second term).
The s.f. is E = Q

(
4
√
2, i
)

.

|E : Q| =

2
︷ ︸︸ ︷
∣
∣
∣E : Q

(
4
√
2
)∣
∣
∣

︸ ︷︷ ︸

x2 + 1is irreducible over Q
(

4√2
)

and Eis it’s s.f.

·

4
︷ ︸︸ ︷
∣
∣
∣Q
(

4
√
2
)

: Q
∣
∣
∣

︸ ︷︷ ︸

x4 − 2is irreducible over Q

= 8

Gal (E/Q) is isomorphic to a subgroup of S4.
S4 contains no element of order 8, so Gal (E/Q) ̸∼= C8.

Example 5.8.10 : Let ϕ be the complex conjugation. So ϕ ∈ Gal (E/F). ϕ2 = Id.

ϕ
(

4
√
2
)

= 4
√
2

ϕ
(

− 4
√
2
)

= − 4
√
2

As ϕ fixing all real numbers.
But:

i 4
√
2
ϕ.→ −i 4

√
2

Claim 5.8.11

The map ψ sending 4
√
2 .→ i 4

√
2 but fixing i s an automorphism.

Proof:
ψ
(

a+ b 4
√
2 + ci 4

√
2 + d

√
2 + ei

√
2
)

= a+ bi 4
√
2− c 4

√
2− d

√
2− ei

√
2

Need to show it is additive, mult, etc.

ψ2
(

4
√
2
)

= ψ
(

i 4
√
2
)

= − 4
√
2

ψ4
(

4
√
2
)

= ψ
(

− 4
√
2
)

= −i 4
√
2

ψ4
(

4
√
2
)

= ψ
(

−i 4
√
2
)

= 4
√
2
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ψ is of order 4.

ϕψ
(

4
√
2
)

= ϕ
(

i4
√
2
)

= −i 4
√
2

ψϕ
(

4
√
2
)

= ψ
(

4
√
2
)

= i 4
√
2

So Gal (E/Q) is non-abelian.

Turns out that ϕ−1ψϕ = ψ3. So in-fact Gal (E/Q) ∼= D8.

Lemma 5.8.12

If f (x) ∈ Z [x] and monic, then every rational root is an integer.

Remarks 5.8.13 This is a special case of Gauss’ Lemma.

Proof: If f
q ∈ Q is a root, r, s ̸= 0 ∈ Z s.t. (r, s) = 1. Write:

f (x) = xn + an−1x
n−1 + . . .+ a0

Then:

(r

s

)n
+ an−1

(r

s

)n−1
+ . . .+ a0 = 0

Multiply by sn and we get:

rn + an−1sr
n−1 + an−2s

2rn−2 + . . .+ a0s
n = 0

So we got:

−rn = s
(

an−1r
n−1 + an−2sr

n−2 + . . .+ a0s
n−1)⇒ s | rn

If p is a prime divisor of s, then p | rn and so p | r, but (r, s) = 1 - contradiction!

So s has no prime divisors, so s = ±1 and we get: r
s ∈ Z as required.
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Example 5.8.14 : f (x) = x3 + 2x+ 1 over Q.

Claim 5.8.15

f is irreducible over Q.

Proof: f is irreducible over Q as it has no roots in Q as by our Lemma, it is sufficient to show it has no integer
roots.
Let’s look at some values:

f (0) = 1

f (−1) = −2

Which means it changes signs between 0 and −1. As a real function f (x) = x3 + 2x+ 1 is continuos and so there
exists a real root α s.t. −1 < α < 0.
Now, Note that:

f ′ (x) = 3x2 + 2 > 0

For all real x, so f (x) is an increasing function for all real x. Therefore α is it’s only real root. But it’s clear that
α /∈ Z as it lies between −1 and 0. So α /∈ Q.

We extend to Q (α). We know that |Q (α) : Q| = 3 as f is irreducible.
Factoring f over Q (α) we get:

x3 + 2x+ 1 = (x− α)
(

x2 + αx+
(

2 + α2
))

Because:
−α
(

2 + α2
)

= 1⇒ −α3 − 2α = 1

Holds as a3 + 2α+ 1 = 0.
The roots of x2 + αx +

(

2 + α2
)

are:

−α±
√

α2 − 4 (2 + α2)

2
=
−α±

√
−3α2 − 8

2

Note that the square root is negative, as we expected, thus the roots are β and β, complex numbers.
β,β are remaining non-real roots.
The s.f. of x3 + 2x+ a is: Q (α,β) and:

x3 + 2x+ 1 = (x− α) (x− β)
(

x− β
)

|Gal (Q(α,β)/Q)| = |Q (α,β) : Q| = |Q (α,β) : Q (α)|
︸ ︷︷ ︸

2

· |Q (α) : Q|
︸ ︷︷ ︸

3

= 6

Thus Gal (Q(α,β)/Q) permutes α,β,β and so ∼= S3.

5.9 Cyclotomic extensions of Q

Cyclotomic extensions are extensions of Q obtained by adjoin roots of unity.

Denote: n
√
1 = e

2πi
n = “primitive n-th root of 1”.

We want to explore Q
(

n
√
1
)

.

Example 5.9.1 : Q (i), i = 4
√
1

Denote: minimal polynomial of n
√
1 over Q by λn (x)= The n-th cyclotomic polynomial. We know that λn (x) | xn−1

over Q as n
√
1 is a root of xn − 1.

Q
(

n
√
1
)

is a Galois extension.

Over this field, xn − 1 factors completely:
n−1∏

i=0

(

x− ξi
)

= xn − 1, 1, ξ, . . . , ξn−1 all distinct.
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Question:

1. What are λn (x)?

2. How does xn − 1 factor over Q into irreducibles?

3. What is Gal
(
Q( n
√
1)/Q

)

?

4. What is the degree of λn (x)?

Example 5.9.2 : n = 1: x− 1 = λ1 (x)
n = 2: x+ 1 = λ2 (x), and indeed x2 − 1 = (x− 1) (x+ 1)

n = 3: x3 − 1 = (x− 1)
(

x2 + x+ 1
)

︸ ︷︷ ︸

Irreducible over Q

, λ3 (x) = x2 + x+ 1, ω,ω are its roots and 3
√
1 = ω = −1+i

√
3

2 .

n = 4: x4 − 1 =
(

x2 − 1
) (

x2 + 1
)

= (x− 1) (x+ 1)
(

x2 + 1
)

︸ ︷︷ ︸

Irreducible over Q

, λ4 (x) = x2 + 1.

It turns out by Gauss’ lemma, that if f (x) , q (x) ∈ Q [x] and f (x) g (x) = xn − 1, then f (x) , g (x) ∈ Z [x].

Question: Is it true that all factors of xn − 1 over Q have coefficients in the set {0,+1,−1}?
It turns out that it is true up to n = 104!

Fails for n = 105: (1883) Migotti: If h has at most 2 distinct prime factors then coefficientz of λn (x) ∈ {0,±1}.

Example 5.9.3 : Let’s take a look at Q (i). Note that |Q (i) : Q| = 2. If we will look at Q× Q, we can find
out that the addition is the same as in this vector space: a+ ib .→ (a, b).
And we add the multiplication rule:

(a, b) (c, d) = (ac− bd, bc+ ad)

Thus (0, 1) is a root of (−1, 0).

Example 5.9.4 : If now we will take: Q (ω) s.t. |Q (ω) : Q| = 2 and those are the complex roots of the
polynomial: x3 − 1 = (x− 1)

(

x2 + x+ 1
)

︸ ︷︷ ︸

minimal polynomial of ω

, so:

ω2 + ω + 1 = 0⇒ ω2 = −1− ω

Thus:
Q (ω) = {a+ ωb | a, b ∈ Q}

We got the addition same is in Q×Q again, where: a+ ωb .→ (a, b).
And we got the multiplication rule rule:

(a, b) (c, d) = (ac− bd, bc+ ad− bd)

Because:
(a+ ωb) (c+ ωd) = ac+ ω2bd+ (bc+ ad)ω = ac+ (−1− ω) bd+ (bc+ ad)ω

And, in this field (0, 1) is a primitive cubed root of (1, 0)

Example 5.9.5 : Q
(√

2
)

, Again
∣
∣Q
(√

2
)

: Q
∣
∣ = 2. Similar to the above examples.

There infinite many nonsiomorphic ways to define multiplication on Q(2) to get a field!

Now, Lets look at λn (x) = The minima polynomial of n
√
1 . (Hence: λn (x) | xn − 1 .

Let’s focus on the case where n = 5, x5 − 1 = (x− 1)
(

x4 + . . .+ 1
)

︸ ︷︷ ︸

irreducible

. Infact, for n = p prime we will get:

xp − 1 = (x− 1)
(

xp−1 + xp−2 + . . .+ x+ 1
)

︸ ︷︷ ︸

irreducible=λp(x)

36



CHAPTER 5. FIELD THEORY 5.9. CYCLOTOMIC EXTENSIONS OF Q

The irreducibility follows from Eisenstein’s criterion.

Example 5.9.6 : Now, Let’s look at the case where n = 6:

x6 − 1 =
(

x3 − 1
) (

x3 + 1
)

= (x− 1)
︸ ︷︷ ︸

1

(

x2 + x+ 1
)

︸ ︷︷ ︸

ω,ω2

(x+ 1)
︸ ︷︷ ︸

−1

(

x2 − x+ 1
)

︸ ︷︷ ︸

irreducible over Q=λ6(x)

So inface: ∣
∣
∣Q
(

6
√
1
)

: Q
∣
∣
∣ = 2

−ω is in fact a primitive 6-th root of 1. (−ω)6 = 1. So: Q
(

6
√
1
)

= Q (ω).

Theorem 5.9.7
∣
∣Q
(

n
√
1
)

: Q
∣
∣ = ϕ (n) =Euler ϕ-function.

Example 5.9.8 : As we’ve seen: ϕ (3) = 2, ϕ (p) = p− 1 where p prime, ϕ (6) = |{1, 5}| = 2.
And note that also: ϕ (4) = 2 and we can continue like so.

Proof: We will not go over the entire proof. Just a quicq review:

We show that degλn (x) = ϕ (n). It turns out that if ξ = n
√
1 then for every k prime to n, ξk is a root of λn (x).

Moreover, these are all the roots over C:

λn (x) =
∏

1 ≤ k < n
(k, n) = 1

(

x− ξk
)

Note that from Gauss’s Lemma, λn (x) are actually polynomial over Z.

Remarks 5.9.9 If d | n then any d-th rot of 1 is also an n-th root of 1. Consequently, λd (x) | xn − 1 over Z.

Conversely, suppose p (x) is irreducible factor of xn − 1, Then any root of p (x) in Q
(

n
√
1
)

must also be a root of
xn − 1, as if p (α) = 0 then αn − 1 = 0.

So α is a root of 1 for some d and since αn = 1, must have d | n ⇒ The irreducible factors of xn − 1 over Q are
precisely {λd (x) | d | n}. i.e.:

xn − 1 =
∏

d|n

λd (x)

Example 5.9.10 :

x6 − 1 =
∏

d|6

λd (n) = λ1 (x) λ2 (x)λ3 (x)λ6 (x)

Example 5.9.11 : n = 12:

x12 =
(

x6 − 1
) (

x6 + 1
)

=
(

x6 − 1
) (

x2 + 1
)

︸ ︷︷ ︸

irreducible over Q

(

x4 − x2 + 1
)

︸ ︷︷ ︸

irreducible over Q

= λ1 (x)λ2 (x) λ3 (x)λ6 (x)λ4 (x) λ12 (x)

This gives a nice number theory formula:

n =
∑

d|n

ϕ (d)
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5.9.1 Galois group of a cyclotomic field

We want to ask, what is Gal
(
Q( n
√
1)/Q

)

?

We know that:
∣
∣Gal

(
Q( n
√
1)/Q

)∣
∣ = ϕ (b)

Assume that ϕ ∈ Gal
(
Q( n
√
1)/Q

)

permutes the roots of λn (x) and it is a s.f. for λn (x) . ξ = n
√
1 , the image of ξ

determines ϕ. ϕ (ξ) = ξk fo some k s.t. (k, n) = 1. Denote this by ψk. Each k s.t. (k, n) = 1 indeed yields an
automorphism. Since |G| = ϕ (n) every element is of this form.

Let l, k be prime to n, Lets look at:

ψlψk (ξ) = ψl

(

ξk
)

= (ψl (ξ))
k = ξlk

ψkψl (ξ) = ψk

(

ξl
)

= ξlk

So that, ψkψl = ψlψk and G is abelian. If l · k = m ( mod n) we have that ψlψk = ψm. We infact have an
isomorphism between G and (Z/nZ)∗ =group of units of Z/nZ. Meaning: ψk .→ k. So G ∼= (Z/nZ)∗.

Example 5.9.12 : n = 6. ξ = 6
√
1 = ω.

− ω2
︸︷︷︸

=ξ5=ξ−1

(−ω) = 1

The 2 options are:

• ξ
Id.→ ξ.

• ξ
ψ.→ ξ5 = ξ−1.

ψ is of oder 2. Gal
(
Q( 6√1)/Q

) ∼= C2.

Example 5.9.13 : n = 12. ξ = 12
√
1.

There are few options:

• ξ
Id.→ ξ.

• ξ
τ.→ ξ5.

• ξ
ψτ.→ ξ7.

• ξ
ψ.→ ξ11 = ξ−1.

Remarks 5.9.14 If ξ = n
√
1 then ξ−1 = ξ, meaning ψ=complex conjugation.

Note that:
τ2 (ξ) = τ

(

ξ5
)

= ξ25 = ξ

Because:
52 ≡ 1 ( mod 12)

So ψ is of order 2.
ψτ (ξ) = ψ

(

ξ5
)

= ξ55 = ξ7

And of course:
72 ≡ 1 ( mod 12)

Thus we have:
Gal

(
Q( 12√1)/Q

) ∼= (Z/12Z) = {1, 5, 7, 11}

All the elements in Gal
(
Q( 12√1)/Q

) ∼= C2 × C2 are of order 2.
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5.10 Finite fileds

Definition 5.10.1 Prime field: A prime field has to be of the form Z/pZ (and then char = p.

The big difference in the case of finite field is the following theorem:

Theorem 5.10.2

There is only one field of a given order - up to isomorphism.

We will prove the following theorem:

Theorem 5.10.3

A finite filed is of order pk for some prime p and 1 ≤ k ∈ N. And for any prime p and 1 ≤ k ∈ N, there exists a
unique field of that order (up to isomorphism). Denote GF

(

pk
)

, Galois field.

We will prove this gradually. Proof: Let F be finite. It has a prime char = p and some field F0
∼= Z/pZ. F is a

vector space over F0, and because F is finite, it has a finite dimension k. So F ∼= F (k)
0 as a vector space.

So F has pk elements (= number of linear combindations of a given basis over Z/pZ.

Example 5.10.4 : Z/2Z unique field of order 2.
x2 + x+ 1 is irreducible of Z/2Z (because it is a 2 degree polynomial with no roots in the field).
Look at:

Z/2Z[x]/(x2+x+1)z/2Z[x]

This is a quadratic extension of Z/2Z, denote it by K.
Note that:

|K : GF (2)| = 2

So, |K| = 4. Elements can be considered to be linear polynomials in x, with addition and multiplication
mod

(

x2 + x+ 1
)

over Z/2Z.
The addition is defined by:

+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0
And the multiplication:

· 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

(Note that (x+ 1)2 ≡ x2 + 1 = x)
It can be shown directly that this is the only field of order 4 up to isomorphism.

Remarks 5.10.5 x2 + x+ 1 is in fact the only irreducible quadtatic over Z/2Z. The other redicubles are:

x2 = x · x
x2 + 1 = (x+ 1)2

Remarks 5.10.6 The identity (x+ 1)2 ≡ x2 + 1 is more general, in fact:

(x+ 1)p ≡ xp + yp ( mod p)
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Example 5.10.7 : x4 + x3 + 1 over GF (2). It is in fact irreducible over GF (2).

• It has no linear factors.

• It has no quadractic factors as only candidate is x2 + x+ 1 and
(

x2 + x+ 1
)2

= x4 + x2 + 1.

So K = GF(2)[x]/(x4+x3+1) =field of order 16. Elements can be considered to be polynomials of degree ≤3 over
GF (2) with addition mod 2 and multiplication mod

(

x4 + x3 + 1
)

.
For example:
If we take

(

x2 + x
)

+
(

x3 + x2 + 1
)

= x3 + x+ 1
And:

(

x2 + x
) (

x3 + x2 + 1
)

= x5 + 2x4 + x3 + x2 + x ≡
︸︷︷︸

mod 2

x5 + x3 + x2 + x ≡

(

x4 + x3 + 1
)

(x+ 1) +
(

x2 + 1
)

≡
︸︷︷︸

mod (x4+x3+1)

x2 + 1

Similarly:
x3 (x+ 1) = x4 + x3 ≡

︸︷︷︸

mod (x4+x3+1)

−1 ≡
︸︷︷︸

mod 2

1

So x3 = (x+ 1)−1 in K.

Another notation: Consider elements to be 4-tuples over GF (2) : GF (2)(4) . e.g.: ax3+bx2+cx+d .→ (a, b, c, d).

Lets look at:
(

x2 + x
)

+
(

x3 + x2 + 1
)

. We get:

(0, 1, 1, 0) + (1, 1, 0, 1) = (1, 0, 1, 1)

Again, addition is easy, multiplication is not.

A 3rd notation: Denote: α = x+
(

x4 + x3 + 1
)

.

We know that α is a root of x4 + x3 +1 in K. α is an element in the multiplication group of the field K∗ = K\ {0}
so α15 = 1. α ̸= 1, so |α| = 3, 5, 15.

We want to check what the order of α is.

Clearly, α3 ̸= 1, as if so we would have: α3 ≡ 1
(

mod x4 + x3 + 1
)

, but 1, x, x2, x3 are linear independent as
x4 + x3 + 1 is minimal polynmial.

In other words α3 − 1 = 0 which is impossible.

Note that α4 = α3 + 1, as x4 + x3 + 1 = 0 in quotient ring (K).

α5 = α
(

α2 + 1
)

= α4 + α ̸= 1 otherwise α root of x4 + x+ 1 and x4 + x3 + 1 " x4 + x+ 1.

So α is of order 15.

So 0, 1,α,α2, . . . ,α14 are all the elements of K. So this is another representation of K, but here it is easy to multiply
because: αi · αj = αi+j .

We also denote: GF (16) ∼= F2[x]/(x4+x3+1).

So to summerize, these are the representations we’ve seen:
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I II III

0 0 (0, 0, 0, 0)
1 1 (0, 0, 0, 1)
α x (0, 0, 1, 0)
α2 x2 (0, 1, 0, 0)
α3 x3 (1, 0, 0, 0)
α4 x3 + 1 (1, 0, 0, 1)

α5
... (1, 0, 1, 1)

α6 (1, 1, 1, 1)
α7 (0, 1, 1, 1)
α8 (1, 1, 1, 0)
α9 (0, 1, 0, 1)
α10 (1, 0, 1, 0)
α11 (1, 1, 0, 1)
α12 (0, 0, 1, 1)
α13 (0, 1, 1, 0)
α14 (1, 1, 0, 0)

Because x4 ∼= x3 + 1.

Note that for addition it is easy to use the column III mod 2. But for multiplication it is easy to use column I
as: αi · αj = αi+j( mod 15).

Example 5.10.8 : So if, for example we want to add α6 + α7 what will we get?
If we will look at the table we will translate the elements to the third column and we will het:

(1, 1, 1, 1)
︸ ︷︷ ︸

α6

+(0, 1, 1, 1)
︸ ︷︷ ︸

α7

= (1, 0, 0, 0)
︸ ︷︷ ︸

α3

And of course:
α7 · α6 = α13

Another example is to multiply (1, 1, 0, 0) · (1, 0, 1, 1), here we will translate the items to the first column and we
will get: α14 · α5 = α19 = α4 = (1, 0, 0, 1).

5.10.1 Field’s multiplicative group is cyclic

Theorem 5.10.9

The multiplicative group of a finite field is cyclic.

Proof: Using the fundamental theorem for abelian groups (Which we didn’t prove, but can be found at Basic
Algebra I), we know that F ∗ ∼=direct product of cyclic groups of prime power orders.

Group together those corresponding to same prime power, pi, to get:

F ∗ ∼= H1 ×H2 × . . .×Hr

With: Hi =direct product of cyclic groups of orders power of pi.

Thus:

Hi = C
p
ki1
i

× C
p
ki2
i

× · · ·× C
p
kit
i

WLOG, we have: ki1 ≥ ki2 ≥ · · · ≥ kit . Hence, every element in Hi satisfies: ap
ki1
i = 1. Thus, a is a root of the

polynomial xp
ki1
i − 1. As a ∈ F , there are at most p

ki1
i roots to this polynomial in F . So |Hi| ≤ p

ki1
i . Meaning:

ki2 = ki3 = . . . = kit = 0 (otherewise there will be too many roots to that polynomial!). So Hi is cyclic!

Thus, F ∗ is a product of cyclic groups of mutually prime orders, and is therefore cyclic as required.
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Remarks 5.10.10 GF (16) was obrained as an extension field of GF (2) in which x4 + x3 + 1 has a root: α.

Note that:
(

x4 + x3 + 1
)2

=
︸︷︷︸

mod 2

x8 + x6 + 1. So α2 is a root of x4 + x3 + 1, becuase:

0 =
(

α4 + α3 + 1
)

= α8 + α6 + 1

But we can do it again:

0 =
(

α8 + α6 + 1
)2

= α16 + α12 + 1

So α4 is another root.
Similarly α8 is a root.
So GF (16) is a spliting filed for x4 + x3 + 1, so it factors completely:

x4 + x3 + 1 = (x− α)
(

x− α2
) (

x− α4
) (

x− α8
)

Remarks 5.10.11 If F is a field, and if |F | = q = pk (with p prime), then every element of F ∗ is a root of xq−1−1.
So every element of F is a root of xq − x. This polynomial as at most q roots, but every element of F is a root for
this polynomial, and it has q elements.
We can conclude that F is a spliting field for xq − x as it contains q distinct roots of this polynomial. Moreovere,
every element of F is a root.
So that over F : xq − x =

∏

a∈F
(x− a).

Corollary 5.10.12

If a ∈ F , then it’s minimal polynomial over GF (p) divides xq − x.

Example 5.10.13 : In GF (16), we get that x4 + x3 + 1 | x16 − x.

5.10.2 Finite fields of the same oreder are isomorphic

Theorem 5.10.14

Any 2 finite fields F, F̃ of equal order are isomorphic.

Proof: Both are splitting fields of xq − x over GF (p) where q = pk and so are isomorphic. But we shall constract
an isomorphism explicitly.

We know that F ∗ is cyclic, so let ⟨α⟩ = F ∗, in other words, α is the generator of F ∗. Let m (x) be it’s minimal
polynomial over GF (p). m (x) | xq − x over GF (p).

And since F̃ is also a s.f. of xq − x, F̃ must contain a root β of m(x). Map:

{

αi .→ βi

0
for 0 ≤ i ≤ q − 1. ϕ is

clearly a multiplicative map.

Claim 5.10.15

ϕ is onto F̃ .

Proof: Suppose βr = 1 for r < q − 1, so β is a root of xr − 1 so it’s minimal polynomial divides xr − 1, thus
m (x) | xr − 1 . But as m (α) = 0 in F we get αr − 1 = 0 and αr = 1 . Contradiction as ⟨α⟩ = F ∗

To complete our proof that ϕ is an isomorphism we show that it is additive, clearly
(

αi + 0
)

= ϕ
(

αi
)

. We need to
check that for any i, j ϕ

(

αi + αj
)

= ϕ
(

αi
)

+ ϕ
(

aj
)

.

There are two cases we need to check:

1. αi + αj = αl for some l.

2. αi + αj = 0.
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We will dill with the first case:

ϕ
(

αi + αj
)

= ϕ
(

αl
)

= βl

ϕ
(

αi
)

+ ϕ
(

αj
)

= βi + βj

We need to show that βi + βj = βl. α is a root of the polynomial xi + xj −xl, so m (x) | xi + xj −xl, so β is a root
of xi + xj − xl as well, givinig βi + βj = βl as required.

The second case is remained to the reader.

5.10.3 Existance of fields of order pm

Theorem 5.10.16

For any prime p and integer m > 0 there exists a unique field of order pm (denoted by GF (pm)).

Proof: Take Z/pZ and contsruct a splitting field over it for the polynomial xpm − x. This gives a field F of order
q. Since the set of roots is of order pm, pm ≤ q.

But the set of roots is in fact a field, so by minimality of the splitting field, pm = q.

Corollary 5.10.17

For any integer n > 0 and a prime p there exists an irreducible polynomial of degree n over Fp.

Proof: Let F be the field of order pn. F ∗ is cyclic so it has a generator α.

α has a minimal polynomial m (x) over Fp and we know that: F = Fp (α) = Fp[x]/(m(x)) and that |Fp (α) : Fp| =
degm (x), So m (x) is irreducible of degree n.

5.10.4 Factoring xn − 1 over Fp

Remarks 5.10.18 Can always factor over Q (which in fact over Z) and reduce mod p to get a partial factorisa-
tion.

We write n = pr ·m with (m, p) = 1.

Recall that:

• (a+ b)p = ap + bp over Fp. ⇒ (a+ b)p
k

= ap
k

+ bp
k

• (−1)p = −1 over Fp for p odd.

• (−1)2 = −1 over F2 .

And we can conclude that: (a− p)p
k

= ap
k − bp

k

over Fp.

So xm − 1 = xmpr − 1 = (xm − 1)p
r

. So it is enought to look at the case xn − 1 where (n, p) = 1.

Claim 5.10.19

If (n, p) = 1 there exists a positive integer k s.t. n | pk − 1.

Proof: p+ nZ ∈ (Z/nZ)∗. By abuse of notation, we write p ∈ (Z/nZ)∗. (Z/nZ)∗ is finite (in fact of order ϕ (n), but
it doesn’t matter). The fact that it is finite means that ∃k > 0 s.t. pk ≡ 1 ( mod n) and so n | pk − 1.

Suppose f (x) ∈ Fp [x] is an irreducible polynomial of xn− 1 and n | pk− 1 . Let α be a root of f in some extension
field of Fp.

f (x) | xn − 1 so α is a root of xn − 1. So αn = 1 but n | pk − 1 so also αpk−1 = 1 or αpk

= α. Let q = pk, We can
regard α as an element of GF (q) = Fq. So it’s minimal polynomial f (x) | xq − x.

So, to factor xn − 1 where (n, p) = 1 we need to know how to factor xq − x where q = pk (and n | pk−1), any factor
of xn − 1 is a factor of xq − x.
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So we reduce to the case of factoring xq − x over Fp.

q = 16.

x4 + x3 + 1 | x16 − x.

The roots of x4 + x3 + 1 are: α,α2,α4,α8 .

x16 − x = x
︸︷︷︸

0

(x+ 1)
︸ ︷︷ ︸

1

(

x4 + x3 + 1
)

︸ ︷︷ ︸

α,α2,α4,α8

h (x)

So h (x) is of degree 10, we need to factor h (x).

Using Q:

x16 − x = x
(

x15 − 1
)

= x
(

x5 − 1
) (

x10 + x5 + 1
)

Also over F2. And:

x5 − 1 = (x− 1)
(

x4 + x3 + x2 + x+ 1
)

︸ ︷︷ ︸

another fator of x16 − xand a factor of h ()
and is not irreducible over F2

and it is has no roots in F2and is not a product
of 2irreducible quadtratics as only irreducible

quatratic is x2 + x+ 1and:
(

x2 + x+ 1
)2

= x4 + x2 + 1

Another option is to use reciprocal poynomials:

Definition 5.10.20 Let f (x) be a polynomial of degree m. It reciprocal g (x) =
︸︷︷︸

formally

xm · f
(

x−1
)

.

Example 5.10.21 :

f (x) = 3x5 + 2x2 − 7x

g (x) = x5
(

3x−5 + 2x−2 − 7x−1
)

= 3 + 2x3 − 7x4

Claim 5.10.22

• The reciprocal of a polynomial f (x) is a poynomial in x.

• If contant term of f (x) ̸= 0 then its reciprocal has degree equal to deg f .

• If β is a root of f then β−1 is a root of reciprocal.

• If f (x) is irreducible ⇐⇒ its reciprocal is irreducible.

We will proove this claim in Assignment 4.

Another claim that is not in the assigment:

Claim 5.10.23

If constant term of f is ̸= 0 then the reciprocal of the reciprocal is f .

Since α−1 ∈ GF (16), It’s minimal polynomial is the reciprocal of x4 + x3 + 1 and also divides x16 − x so we get:
x4
(

x−4 + x−3 + 1
)

= 1 + x+ x4. This polynomial is irreducible and its roots are α−1,α−2,α−4,α−8. So we found
some more polynomials by starting from the roots.

Look at the polynomial x16 − x, The factorization is:

x16 − x = x (x+ 1)
(

x4 + x3 + 1
) (

x4 + x+ 1
) (

x4 + x3 + x2 + x+ 1
) (

x2 + x+ 1
)
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The roots of the polynomial are:

0; 1; α,α2,α4,α8; α14,α13,α11,α7; α3,α6,α12,α9; α5,α10

Only the last element added α5,α10 because they are of order 3, thus the roots of x3 − 1.

Note that α15 = 1.

Corollary 5.10.24

GF (16) contains the subfield GF (2) ,GF (4) but not GF (8).

GF (8) is the s.f. of an irreducible polynomial of degree 3 over GF (2) and no such polynomial divides x16 − x.

Lemma 5.10.25

xm − 1 | xn − 1 ⇐⇒ m | n (over any prime field).

Proof:
xn − 1 = (xm − 1)

(

xn−m + xn−2m + . . .+ xn−km)+
(

xn−km − 1
)

With n ≥ km but n < (k + 1)m.

But
(

xn−km − 1
)

= 0 ⇐⇒ n− km = 0 ⇐⇒ m | n.

Corollary 5.10.26

GF (Pm) ⊆ GF (pn) ⇐⇒ m | n.

Proof: If m | n then by the Lemma pm − 1 | pn − 1 and so again by the Lemma:

xpm−1 − 1 | xpn−1 − 1

and so:
xpm

− x | xpn

− x

So GF (pn) which contains all roots of xpn − x and so all roots of xpm − x which form the field GF (pm).

Now, if GF (pm) ⊆ GF (pn) then GF (pn) is a vector space over GF (pm) of finite dimension k. Thus:

|GF (pn) : GF (pm)| = k

Buy then GF (pn) ∼= GF (pm)(k) as a vector sapce⇒ pn = pmk ⇒ m | n.

The Frobenius automorphism

Let ϕ be the Frobenius automorphism, that is:

In a field F of char p, the map: a
ϕ.→ ap is an automorphism.

If m | n , In GF (pn) the set of elements that are fixed points under pm is the subfield GF (pm).

Theorem 5.10.27

Over Z/pZ: xpn − x =product of all monic irreducible polynomials over Z/pZ of degrees dividing n.

Remarks 5.10.28 Constructing GF (16) as an extension field of GF (2) using x4 + x3 + x2 + x+ 1 gives a root β
of this polynomial β5 = 1. So ⟨β⟩ ̸= GF (16)∗. But F2 (β) = GF (16).
i.e. not every element in GF (16)∗ can be written as a power of β. But every element is a polynomial in β (of degree
≤ 3).

Proof: Let f (x) be irreducible of degree m where m | n. Extend Fp using f to a field of order pm. By the last
theorem, GF (pm) ⊆ GF (pn) as m | n. So f is the minimus polynomial of some element in GF (pn) and every
element in GF (pn) is a root of xpn

− x and so f (x) | xpn

− x.
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Conversely, if f (x) is an irreducible constituent of xpn − x of degree m, then if β is a root of f (x), β ∈ GF (pn).

Adjoining β to Fp gives a field GF (pm) but β is a root of xpn − x and so also an element of GF (pn).

Every element in GF (pm) = Fp (β) can be written as a polynomial in β over Fp and so we get GF (pm) ⊆ GF (pn)
which means m | n .

Remarks 5.10.29 Each factor in the factorisation above appears only once as all roots of xpn − x are distinct.
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Chapter 6

Vector-spaces over F2 and Error-correcting

codes

6.1 Introduction

The idea over Error-correcting codes are a method to transmit information in such a way that it will be able to
correct itself. Meaning if there is some distrubence on the line, it will be able to recover the original data. More-
or-less like a spell check. For example if we take the world “elephant”, there is only one way to fix it to a valid word
in english with changing only one letter.

So, the idea is:

Transmit information, with enough redundancy to enable reconstruction of original message even
after errors appear.

The information assumed to binary.

Example 6.1.1 : We can transmit 11010111 3 times, and maybe we have error in some bits, and we got:

0 1 1 0 0 1 0 1
1 1 0 1 0 1 1 1
1 0 1 1 0 1 1 1

My using majority we will get:
1 1 1 1 0 1 1 1

We got only a error in one bit... but that was only a quick example.

This method is not very efficient, we transmit 3 times the amount of data that is required. We will see some better
mechanisms.

6.2 Parity check digit

We transmit an extra digit:
{

1 if the number of 1s in the message is odd

0 if the number of 1s in the message is even

So in the last examle, we will send: 1 1 1 1 0 1 1 1 0.

The receiver can do a parity check to see if have an even number of 1s can conclude if there was an error if this is
not the case.
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Example 6.2.1 : A famous example for parity check is the ID last digit:
For example, we have Aviv’s ID:

0 3 6 5 1 7 6 6
1 2 1 2 1 2 1 2
0 6 6 1 1 5 6 3

(We are multyplying the first line by the second modulu 10) So we sum it up and we get:

0 + 6 + 6 + 1 + 1 + 5 + 6 + 3 = 28

So the validity digit will be: 10− 8 = 2.

6.3 Hamming (7, 4)-code - single error correcting code.

We have 4 infomation digit. Let p be the probability of an error in transmission of a digit.

So, the probability of 4 correct digits is (1− p)4. The probability of 7 information digits containing ≤ 1 error is:
(1− p)7 + 7p (1− p)6.

Note that if p = 0.1 then: (1− p)4 = 0.6561 but (1− p)7 + 7p (1− p)6 = 0.8503, thus the latter has higher
probability (and it is true for a bunch of p).

Take the matrix:
v1
v2
v3
v4

⎛

⎜
⎜
⎝

1 0 0 0 | 0 1 1
0 1 0 0 | 1 0 1
0 0 1 0 | 1 1 0
0 0 0 1 | 1 1 1

⎞

⎟
⎟
⎠

The first 4 bits are the original bits, and the latter three are the correction.

Now sapce of this matrix over F2 is code.

This is a “linear code” i.e. set of codewords is a vector space. There are 16 codewords.

Example 6.3.1 :
1 1 0 1 ⇐⇒ v1 + v2 + v4 = 1 1 0 1 0 0 1

6.3.1 Efficient decoding

Take the vectors:

a =
(

0 0 0 1 1 1 1
)

b =
(

0 1 1 0 0 1 1
)

c =
(

1 0 1 0 1 0 1
)

Use an analogue to scalar products between vectors in F2:

(x1, . . . , xn)

⎛

⎜
⎝

y1
...
yn

⎞

⎟
⎠ =

n
∑

i=1

xiyi

(Matrix multiplication and it is a bilinear form).

Remarks 6.3.2 v⃗ · v⃗ = 0 does not imply v = 0!

Example 6.3.3 : (1, 1, 0, 1)

⎛

⎜
⎜
⎝

1
1
0
0

⎞

⎟
⎟
⎠

= 1 + 1 = 0.
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Suppose our received message is:
y∗ =

(

1 1 0 1 1 1 0
)

Note that:
(

1 1 0 0 1 1 0
)

= v1 + v2

So the message differes from a codeword by 1 digit.

Note that:

y∗ · a =
(

1 1 0 1 1 1 0
)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
1
1
1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 1

y∗ · b =
(

1 1 0 1 1 1 0
)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
1
0
0
1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0

y∗ · c =
(

1 1 0 1 1 1 0
)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
1
0
1
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0

We look at the binary number 100(2) = 4, so the error is in the 4-th digit which is true!

How does it work? Recall that if W ⊆ V subpace of a vector space V over F , then if B : V × V → F is a
bilinear form, we can define:

w⊥ = {v ∈ V | B (u, v) = 0 ∀u ∈ W}

Remarks 6.3.4 Since we have:

B (αu1 + βu2, v) = αB (u1, v) + βB (u2, v)

It follows that w⊥ is a vector space.

Theorem 6.3.5

dimW + dimW⊥ = dimV .

Remarks 6.3.6 Need not have W ∩W⊥ = {0} (It is only valid for char 0, not in general, for example over F2

take a vector with even number of ones and you will get that it is orthogonal to itself).

Example 6.3.7 : If W = span {(0, 1, 0, 1)} then W # W⊥ , they are not equal because dimW⊥ = 3.

Remarks 6.3.8 The vectors: a, b, c are orthogonal to all rows of the code matrix and they are linear independent,
and so they span the orthogonal complement of the code.

Remarks 6.3.9
(

W⊥
)⊥

= W .
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So we conclude: y ∈ C ⇐⇒ y · a = y · b = y · c = 0.

Now, the matrix whose columns are a basis for C⊥ is called the parity check matrix. Write a, b, c as columns:

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We have: y ·H =
(

0 0 0
)

⇐⇒ y ∈ C.

Suppose y∗ has 1 error in position i so: y∗ = y + ei, where y ∈ C . So:

y∗H = yH + eiH = row iin matrix H = iin binary form!

Remarks 6.3.10 Code can correct single errors only if codewords differ from eachother in more than 2 digits.

We had: H =columns of H basis for C⊥. If y∗ contained single error in position i then: Hy∗ gave us the row i of
H .

Words in the Hamming code differe by at least 3 digits. So, single errors lead to self-correction.

If that wasn’t the case then there might have 2 words: y1, y2 ∈ C s.t. y2 + ej = y∗ = y1 + ei. Giving: Hy∗ =row i
of H =row j of H . In our case, rows of H are distinct so this doesn’t happen.

Definition 6.3.11 For v, w vectors in F
(n)
2 define Hamming distance d to be:

d (v, w) = # of places where vand wdiffer

To have a single error correction need d (v, w) ≥ 3 for all v, w in code.

To have correction of errors need d (v, w) ≥ 2r + 1 for all v, w in code.

Example 6.3.12 : For Hamming (7, 4) code:
Had 16 codewords.
In vector space we have 27 = 128 vectors. # vectors with ≤ 1error = 16 + 7 · 16 = 16 · 8 = 127

6.4 Double-error correcting code - Bose-Chaudhuri-Hocquenghem code

This code uses GF (16).

Had α root of x4 + x3 + 1, ⟨α⟩ = GF (16)∗.

We construct code indirectly, by first constructing parity check matrix whose rows will span C⊥. And then we have
H · y = 0 ⇐⇒ y ∈ C.

We want multiplication by H to detect ≤ 2 errors.

Eventially the code we define will be a subspace of F(15)
2 .

H will be 8× 15 of the form:

H =

(

b⃗1 b⃗2 . . . b⃗15
c⃗1 c⃗2 . . . c⃗15

)

bi and ci are vectors in F
(4)
2 and so can be considered elements of GF (16).

For convenience we use H ′ = 2 × 15 matrix whose enteries are powers of α (each power corresponds to vector in

F
(4)
2 ).

Suppose x =

⎛

⎜
⎝

x1
...

x15

⎞

⎟
⎠ message, xi ∈ {0, 1}:

Hx =

(∑

b⃗ixi
∑

c⃗ixi

)
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If x = xc + ei + ej , with xc a codeword (i.e. x has errors in positions i and j). We get:

Hx =

(

bi + bj
ci + cj

)

We want to be able to determine i and j uniquely from

{

b = bi + bj
c = ci + cj

.

Denote:

H =

(

1 α . . . α14
)

If ci = (bi)
2 then since we are in char2 we get:

b = bi + bj

c = b2i + b2j = (bi + bj)
2

So c doen’t add infomration. So we take:

H =

(

1 α α2 . . . α14

1 α3 α6 . . . α42 = α12

)

Claim 6.4.1

Being given bi + bjand b3i + b3j we can recover i and j uniquely.

Proof:

c = b3i + b3j = (bi + bj)
︸ ︷︷ ︸

b

(

b2i + bibj + b2j
)

= b

⎛

⎜
⎝b2i + b2j
︸ ︷︷ ︸

b2

+bibj

⎞

⎟
⎠

Note b ̸= 0 as columns are distinct.

So we get:

b−1c+ b2 = bibj

bi and bj are roots of the quadratic polynomial over GF (16).

(x+ bi) (x+ bj) = x2 + (bi + bj)
︸ ︷︷ ︸

b

x+ bibj
︸︷︷︸

b−1c+b2

Given the vector

(

b
c

)

construct the polynomial:

x2 + bx+
(

b−1c+ b2
)

and solve over GF (16). If cannot be solved - must have > 2 errors.
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Example 6.4.2 : Suppose y is a received message with 2 errors in position i and j and that:

Hy =

(

α5

α7

)

=

(

b
c

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
1
1
0
1
1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Form the polynomial: x2 + α5x+ α8 we get:

b−1c+ b2 = α−5α7 + α10 = α2 + α10 =
(

0 1 0 0
)

+
(

1 0 1 0
)

=
(

1 1 1 0
)

= α8

So:

α5 = bi + bj = αi−1 + αj−1

α8 = bibj = αi−1+j−a

8 ≡ i+ j − 2 ( mod 15)

i+ j ≡ 10 ( mod (15))

Now we simply check pairs and we will get i = 3, j = 7 works! as α2 + α6 = α5.

What if y contains a single error in position i?

(

b
c

)

=

(

bi
b3i

)

This is only sitruation in which c = b3. So don’t form polynomial. Simply determine i from b = bi.

Could happen get: b = 0 and c ̸= 0 in which case also have > 2 errors.

Having constructed H we now construct a matrix for the code and determine its dimension.

Claim 6.4.3

rankH = 8 (So the code is of dimension 7).

Proof: We show that field of 8 columns of H are linear independent (So rankH = 8) over F2 as elements of F8
2.

Assume not, so have ai ∈ F2 s.t.
8∑

i=1

ai

(

bi
b3i

)

= 0

So:
∑8

i=1 ai

(

αi−1

α3i−3

)

= 0 ⇐⇒

⎧

⎪
⎪⎨

⎪
⎪
⎩

8∑

i=1
aiαi−1 = 0 ⇐⇒

∑

aiαi = 0

8∑

i=1
aiα3i−3 = 0 ⇐⇒

∑

aiα3i = 0
.

So α is a root of
∞∑

i=1
aixi, α has x4 + x3 + 1 as it’s minimal polynomial.

Also α3 is a root of
∞∑

i=1
aixi, so x4 + x3 + 1 |

7∑

i=0
ai−1xi.

The minimal poynomial of α3 is x4 + x3 + x2 + x+ 1 so:

x4 + x3 + 1, x4 + x3 + x2 + x+ 1 |
7
∑

i=0

ai−1x
i

︸ ︷︷ ︸

of degree at most 7
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(Those two element are irreducible and mutually prime).

We get that
7∑

i=0
ai−1xi ≡ 0 polynomial, otherwise get a contradiction! so ai = 0 for all i.

We now construct code matrix so that last 7 columns are I7×7.

C =
(

Redundancy digits | I7×7
)

We know:

(

1
1

)

,

(

α
α3

)

, . . . ,

(

α7

α6 = α21

)

these are the first 8 columns of H , they span all the columns of H . So

there exist s0, s1, . . . , s7 ∈ {0, 1} s.t.:
7
∑

i=0

si

(

αi

α3i

)

=

(

α8

α24

)

So the row vector:
(

s0 s1 . . . s7 1 0 . . . 0
)

(6 zeroes at the end) is orthogonal to all columns of H .

There exists t0, . . . , t7 ∈ {0, 1}:
7
∑

i=0

ti

(

αi

α3i

)

= column 9of H =

(

α9

α27

)

So row vector:
(

s0 s1 . . . s7 0 1 0 . . . 0
)

(5 zeroes at the end) is orthogonal to all columns of H . similarly for columns 10, . . . , 15 of H .

Get: ⎛

⎜
⎝

s0 . . . s7 | 1 0 . . . . . . 0
t0 . . . t7 | 0 1 0 . . . 0

... |
...

. . .

⎞

⎟
⎠

Remarks 6.4.4 Out of topic: Fields of fraction
If R is a commutative domain, we can constrctu a field F ⊇ R which is minimal, called its field of fractions.
Define an equivalent relation on ordered pairs - R× (R\ {0}). (a, b) ≈ (c, d) ⇐⇒ ad = bc.

Look at equivalent classes: For any a ∈ R, b ∈ R\ {0}, a
b =

⎧

⎨

⎩
(c, d) | (a, b) ≈ (c, d) c, d

︸︷︷︸

̸=0

∈ R

⎫

⎬

⎭
.

Define addition and multiplication on equivalent classes: a
b · c

d = ac
bd ,

a
b + c

d = ad+bc
bd (need to show well-defined),

get a field F.
R ∼=

{
a
1 | a ∈ R

}

.

Example 6.4.5 : R = F [x], F field. The field of fraction is called field of rational functions.
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Chapter 7

Groups

7.1 GL (n, q)
14/01/2014
Missing a lesson!Last lesson we’ve calvulated the order of the group:

GL (n, q) = (qn − 1) (qn − q)
(

qn − q2
)

· · ·
(

qn − qn−1
)

= q1+2+3+...+n−1 (qn − 1)
(

qn−1 − 1
)

· · · (q − 1)

= q
n(n−1)

2 (qn − 1) · · · (q − 1)

Now, note that:
GL(n,q)/SL(n,q) ∼= F ∗

And:
|SL (n, q)| = q

n(n−1)
2 (qn − 1)

(

qn−1 − 1
)

· · ·
(

q2 − 1
)

7.1.1 Sylow subgroups

Now, assume that q = pk for some prime p.

What are the Sylow p-subgroups where p = charFq? Any Sylow p-subgroup of SL (n, q) will also be a
Sylow p-subgroup of GL(n, q).

Look at the subgroup:

H =

⎧

⎪
⎨

⎪
⎩

⎛

⎜
⎝

1 ∗
. . .

0 1

⎞

⎟
⎠

⎫

⎪
⎬

⎪
⎭

Clearly H is a subgroup of GL (n, q) and it’s clear that H ⊆ SL (n, q) .

Moreover, it is obvious that:

|H | = q1+2+...+n−1 = q
n(n−1)

2

We have q choices for each position in the matrix above the main diagonal. So, H ∈ Sylp (SL (n, q)).

We can also take:

HT =

⎧

⎪
⎨

⎪
⎩

⎛

⎜
⎝

1 0
. . .

∗ 1

⎞

⎟
⎠

⎫

⎪
⎬

⎪
⎭

It is also of the same order, so np ̸= 1.

Denote:
SL(n,q)/Z(SL(n,q)) = PSL (n, q)
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Where:

Z (SL (n, q)) = set of scalar matrices

⎛

⎜
⎝

α 0
. . .

0 α

⎞

⎟
⎠where αn = 1

α ∈ GF (q)∗, and |GF (q)| = q − 1.

So if (n, q − 1) = 1 then αn = 1 ⇐⇒ α = 1 for α ∈ F∗q . and then PSL (n, q) = SL (n, q).

But in general, if (n, q − 1) = d then |Z (SL (n, q))| = d.

Theorem 7.1.1

PSL (n, q) are simple groups for all n > 2 and for n = 2 except when q = 2 or q = 3.

7.2 Conjugate classes in GL (n, F )

Theorem 7.2.1

2 matrices are similar (i.e. conjugate) in GL
(

n, F
)

⇐⇒ they have the same Jordan form over F (The algebraic
closure of F ).

Example 7.2.2 : GL (2,C).
We may as well take representative of classes to be in Jordan form.
The possible Jordan forms, for α ̸= 0:

(

α 0
0 α

)

︸ ︷︷ ︸

central elements

,

(

α 0
0 β

)

︸ ︷︷ ︸

α̸=β

,

(

α 1
0 α

)

Each centreal element constitutes a class:

cl

{(

α 0
0 α

)}

=

{(

α 0
0 α

)}

In case that α ̸= β:

cl

{(

α 0
0 β

)}

= cl

{(

β 0
0 α

)}

= all matrices whose char polynomial is (x− α) (x− β)

Since: (

0 1
1 0

)(

α 0
0 β

)(

0 1
1 0

)

=

(

β 0
0 α

)

And for last:

cl

{(

α 1
0 α

)}

= set of all matrices whose char polynomial is (x− α)2but are not diagonalizable.

Theorem 7.2.3

2 matrices are conjugate in GL(n, q) if and only if they have the same Jordan form in GL
(

n,Fq

)

.

For example, let’s take a look at: GL (2, 3).

First note that the order of the group is:

|GL (2, 3)| =
(

32 − 1
) (

32 − 3
)

= 8 · 6 = 48 = 16 · 3

A sylow 3-subgroup =

{(

1 a
0 1

)

| a ∈ F3

}

of order 3, there might be more than one sylow 3-subgroup, in fact

n3 ̸= 1, so according to sylow third theorem we will get that n3 | 16 so: n3 = 4 or 16.

Sylow 2-subgroup of order 16: n2 | 3 and n2 ≡ 1 mod 2 so n2 = 1 or 3.
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Remarks 7.2.4 All char polynomials are quadratic (as matrices are 2 × 2). Moreover, every monic quadratic
polynomial is the char polynomial of a matrix as if:

A =

(

0 1
−b −a

)

= The companion matrix of λ2 + aλ+ b

We get that:

|A− λI| =
∣
∣
∣
∣

−λ 1
−b −a− λ

∣
∣
∣
∣
= (a+ λ) λ+ b = λ2 + aλ+ b

Case 1: Char polyomial factors over F3.

This gives 3 possible forms:

1.

(

α 0
0 α

)

with α ̸= 0.

2.

(

α 0
0 β

)

with α ̸= β.

3.

(

α 1
0 α

)

with α ̸= 0.

Denote GF (3) = {0, 1, 2}, and analyze each of this forms:

1. We have 2 classes of central elements: {(

1 0
0 1

)}

︸ ︷︷ ︸

of order 1

,

{(

2 0
0 2

)}

︸ ︷︷ ︸

of order 2

2. In this case we have only one class:
(

1 0
0 2

)

Because

(

2 0
0 1

)

is conjugate to this. So we only have one conjugate class. Elements are of order 2 as:

∣
∣
∣
∣
cl

{(

1 0
0 2

)}∣
∣
∣
∣
=

|G|
∣
∣
∣
∣
CG

(

1 0
0 2

)∣
∣
∣
∣

Let

(

a b
c d

)

= A ∈ CG

(

1 0
0 2

)

if and only if:

(

a b
c d

)(

1 0
0 2

)

=

(

1 0
0 2

)(

a b
c d

)

⇐⇒
(

a 2b
c 2d

)

=

(

a b
2c = 2d

)

⇐⇒

{

c = 0

b = 0

Meaning that:

CG

(

1 0
0 2

)

=

{(

a 0
0 d

)

| a, d ̸= 0

}

⇒
∣
∣
∣
∣
CG

(

1 0
0 2

)∣
∣
∣
∣
= 4

So: ∣
∣
∣
∣
cl

{(

1 0
0 2

)}∣
∣
∣
∣
= 12

3. Here we have 2 classes:

cl

{(

1 1
0 1

)}

︸ ︷︷ ︸
⎛

⎝

1 1

0 1

⎞

⎠ of order 3

, cl

{(

2 1
0 2

)}

︸ ︷︷ ︸
⎛

⎝

2 1

0 2

⎞

⎠of order 6
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(

a b
c d

)(

1 1
0 1

)

=

(

1 1
0 1

)(

a b
c d

)

⇐⇒
(

a a+ b
c c+ d

)

=

(

a+ c b+ d
c d

)

⇐⇒

{

a = d

c = 0

So:

CG

(

1 1
0 1

)

=

{(

a b
0 a

)}

⇒
∣
∣
∣
∣
CG

(

1 1
0 1

)∣
∣
∣
∣
= 6

Thus: ∣
∣
∣
∣
cl

{(

1 1
0 1

)}∣
∣
∣
∣
= 8

Also: ∣
∣
∣
∣
cl

{(

2 1
0 2

)}∣
∣
∣
∣
= 8

Case 2: char polynomials does not factor over GF (3).

So it factors over GF (q) and the roots are distinct. The possabilities for quadratic polynomials that does not fatcor
over GF (3) are:

⎧

⎪
⎨

⎪⎩

x2 + x+ 2

x2 + 2x+ 2

x2 + 1

Let α be the root of x2 + x+ 2 . So α ∈ GF (q)∗, can check to see α2 ̸= 1, α4 ̸= 1 so ⟨α⟩ = GF (q)∗.

So the roots of x2 + x+ 2 are α,α3 and we will fill the roots simply by checking:

⎧

⎪
⎨

⎪
⎩

x2 + x+ 2 α,α3

x2 + 2x+ 2 α5,α7

x2 + 1 α2,α6

From the companion matrix, we can find a class representative for each of the polynomials:
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎪
⎨

⎪
⎪
⎪⎪
⎪
⎪
⎪
⎪
⎪
⎩

x2 + x+ 2 α,α3

(

0 1

1 2

)

x2 + 2x+ 2 α5,α7

(

0 1

1 1

)

x2 + 1 α2,α6

(

0 1

2 0

)

In GF (2, q) we get that:

(

α 0
0 α3

)

is conjugate to

(

0 1
1 2

)

, so we know the order of the elements:

Class sizes
︷︸︸︷

6

6

6

⎧

⎪
⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎩

x2 + x+ 2 α,α3

(

0 1

1 2

)

order: 8

x2 + 2x+ 2 α5,α7

(

0 1

1 1

)

order: 8

x2 + 1 α2,α6

(

0 1

2 0

)

order: 4

If we count, we see that: 6 + 6 + 6 + 1 + 1 + 8 + 8 + 12 = 48. So, we’ve got everything.

We can conclude that n2 = 3 as there are more than 15 2-elements.

What about elements of order 3? In each 3 group we have exactly 2 elements of order 3. The only class of order 3

is cl

{(

1 1
0 1

)}

. And this class have 8 elements. Thus, each 2 sylow 3-subgroups intersect trivially. So n3 = 4.

In SL (n, q) 2 matrices, A,B, are conjucate if and only if ∃P ∈ SL (n, q) s.t. P−1AP = B.
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7.3 Conjugate classes in Sn

Notation: If i1, . . . , ik are distinct elements in {1, . . . , n} we denote
(

i1 i2 . . . ik
)

permutation that is the
cycle i1 .→ i2 .→ i3 .→ . . . .→ ik .→ i1 and fixes all other indices.

Fact: Any permutation can be writter as a product of distinct cycles.

Example 7.3.1 :
⎛

⎝

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
3 4 5 2 1 6

⎞

⎠ =
(

1 3 5
) (

2 4
)

We write action of σ on i, σ (i) as iσ. The action of permutations is read left to right:

iστ = (iσ)τ

So left-most permutation acts first.

Claim 7.3.2

If σ ∈ Sn and
(

i1 . . . ik
)

a cycle in Sn then:

σ−1
(

i1 . . . ik
)

σ =
(

iσ1 iσ2 . . . iσk
)

Proof: We need to show that both sides of the equation give the same permutation.

Let j ∈ {1, 2, . . . , n}.

Case 1: j /∈ {iσ1 , . . . , iσk}.

So j

(

iσ1 . . . iσk
)

= j, and ofcourse jσ
−1

/∈ {i1, . . . , ik} as permutations are 1-1. So: j
σ−1

(

i1 . . . ik
)

σσ

=

jσ
−1σ = j as j

σ−1
(

i1 . . . ik
)

= jσ
−1

.

Case 2: j ∈ {iσ1 , . . . , iσk} wlog j = iσ1 so jσ
−1

= i1:
⎧

⎪
⎪⎨

⎪
⎪
⎩

j
σ−1

(

i1 . . . ik
)

σ
= i

(

i1 . . . ik
)

σ

1 = iσ2

j

(

iσ1 . . . iσk

)

= iσ2

Corollary 7.3.3

2 permutations are conjugate if and only if they have the same cycle structure when decomposed as a product of
disjoint cycles.

Remarks 7.3.4 This follows from the fact that any 2 cycles of the same length are conjugate as if we have:

(

i1 . . . ik
)

,
(

j1 . . . jk
)

Where the i1, . . . , ik are distinct and the j1, . . . , jk are distinct. Taking σ to be the permutation s.t.:

i1 .→ j1

i2 .→ j2
...

ik .→ jk

and fixing everything else. Then we have:

σ−1
(

i1 . . . ik
)

σ =
(

j1 . . . jk
)
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Example 7.3.5 : Supposing we have:

σ =
(

2 4 5
) (

1 3
) (

6 7
)

τ =
(

1 6 2
) (

3 4
) (

5 7
)

Take:

χ =

⎛

⎝

1 2 3 4 5 6 7
↓ ↓ ↓ ↓ ↓ ↓ ↓
3 1 4 6 2 5 7

⎞

⎠

Then: χ−1σχ = τ .

Example 7.3.6 : S4.
In S4 the class representative will be: Id,

(

1 2
)

,
(

1 2 3
)

,
(

1 2 3 4
)

,
(

1 2
) (

3 4
)

.
And that’s it. This is the only way we can partition S4.

Remarks 7.3.7
(

i1 . . . ik
)

is of order k. Cycles of odd length are even permutations.

7.4 Solvable Groups

Definition 7.4.1 G is solvable if there exists a nirmak series:

1 = G1 ▹G2 ▹ . . . ▹Gn

s.t. Gi ▹Gi+1 and Gi+1/Gi abelian for all i.

Example 7.4.2 :
1 ▹H ▹ V4 ▹A4 ▹ S4

Remarks 7.4.3 If we have such a series we can always find a normal series in which the quotients are cyclic.

Example 7.4.4 : More examples:

• S4

• Any abelian group is solvable.

• Any nonabelian simple group is not solvable e.g. A5 is not solvable.

• S5 is not solvable. Because A5 ▹ S5. If we had:

1 = G1 ▹G2 ▹ . . . ▹Gn = S5

We will get a normal series:
1 = G1 ∩ A5 ▹G2 ∩ A5 ▹ · · · ▹Gn ∩ A5 = A5

So, using the fact that A5 is not solvabe we can deduce that so is S5.

Claim 7.4.5

Finite p-groups are solvable.

Proof: If our group is abelian then it is solvable. Assume not.

We showed already that the center of a p-group is nontrivial.

We take G2 = Z (G). If the quotient G/Z(G) is abelianm we are done.

If not, as it is also a p-group, ints center Z (G/Z(G)) is non trivial.

By the homomorphism theorem, this group is of the form G3/Z(G) where G3 ▹G.
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Hence we have now: 1 = G1 ▹ Z (G) = G2 ▹G3

If G/G3 is abelain, we are done - if not we continue by taking its nontrivial center.

We reach G in finite number of steps because in each step the order is strictly increasing.

Remarks 7.4.6 This series is called the center series, in every group that we can do that is called a nilpotent
group.

The notion of a solvable group goes back to Galois, and is of great importance in his proof that the general
polynomial equation of degree n is not solvable by radicals.

Theorem 7.4.7

If charF = 0 and F contains a primitive n-th root of unity (i.e. F ⊇ Q
(

n
√
1
)

) then:

Gal (K/F) is cyclic of order n ⇐⇒ K = F (α) and α is a primitive n-th root of some element a of F

(In this situation: K is the s.f. of the polynomial xn − a).

Corollary 7.4.8

If f (x) ∈ Q [x] and K is its s.f. then we get that G = Gal (K/Q) is solvable ⇐⇒ We have a sequence of fields:

Q = K1 ⊆ K2 ⊆ . . . ⊆ Ks = K

s.t. Gal (Ki+1/Ki) is cyclic and then it means K is generated over Q by extending by roots of elements of each field
(starting with Q).
Hence: roots of f (x) are expressible using 4 arithmatics operations and extracting roots (of any order) from Q, i.e.
“Solvable by radicals”.

Conclusion: Not every polynomial of degree ≥ 5 is solvable by radicals, as for the general polynomial of degree
n we get that the Galois group of the s.f. is Sn.

The proof is available at Jacobson - Basic Algebra I

For modern group theory the most important theorem regarding solvable group was proved in 1962:

Theorem 7.4.9 The Feit-Thompson Theorem(1962)

Finite groups of odd order are solvable.

Example 7.4.10 : Any group of order 3974821 is sovable.

Corollary 7.4.11

Every finite nonabelian simple group has even order.

The theorem was a first in many respects:

Apart from its mathematical importance, it had the longest proof of any theorem up to that time (proof of 252
pages)!

The proof used results of Brauer in modular

7.5 Classification of finite simple groups

Question: Is it possible to determine all the finite simple groups (up to isomorphism)?

Motivation: The classification of simple Lie groups, which suggested one could also characterize the structure of
finite simple groups of Lie type.
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Suggestion of Brauer(1954): If a nonabelian finite simple group had an involution(element of order 2), it would
be possible to charcterize the structure of all possible centralizers of the involution.

What do we mean by that?

If we have x ∈ G s.t. x2 + 1, we look at CG (x). If we know that structure of CG (x) can only be isomorphic to,
say, 10 possabilities, then we can struct the group around the centralizers.

By Feit-Thompson: Every non-abelian simple group has an involution!

Clearly there are infinite number of isomorphism types - for instance:

• Z/pZ for any prime p.

• An, n ≥ 5.

There are also many inifinite families of matrix group, for instance, if F is a field of order q:

• PSL (n, q) = SL(n,q)/Z(SL(n,q)) are simple unless n = 2, and q = 2 or 3.

and many more.

It turns out that in addition to the infinite families of the types listed above, there are also examples of special
simple groups:

In 1860 Marhieu discovered a simple group not of the above types. And then later found another 4 such groups:
M1,1,M1,2,M2,2,M2,3,M2,4.

Additional “sporadic” finite simple groups were discovered between 1965 (the Janko groups) and 1974 in an attempt
to classify all finite simple groups (these were discovered by chance, by trying to build counter-examples!).

In 1972, Gorenstein suggested that it would be possible to give a complete list of finite simple groups involving the
known infinite families plus a finite list of sporadic groups.

In 1976, it was in the final stages of prrof, finally announced in 1980.

The statement of the theorem:
Theorem 7.5.1

If G is a finite simple group then it is one of the following:

• Z/pZ for a prime p.

• An, n ≥ 5.

• A simple matrix group over a finite field. (these are called groups of Lie type, there is a list of a finite number
of types: classical families, exceptional families and twisted families).

• One of 26 sporadic groups.

Significance and implications: The proof was a huge step forward, it was not even believed possible in the
early 70s!

It now means that many general theorems can be proved using the classification, by checking cases.

There is also the tak of understanding the structure of the known groups, especially the stranger of the sporadic
groups.

The proof consists of hundreds of papers - the first being the Feit-Thompson theorem.

In the 1990s Gorenstein, Lyons, and Solomon gradually published a simplified revised version of the proof (in 6
voulumes)

7.5.1 The sporadic groups , the Fisscher Griess Monster (1982)

In 1973, Fischer and Griess hypothesized the existence of a nuew an gigantic simple group with very special
properties.

Griess constructed it (thus proving its existence) in 1980.

John Thompson showed that the uniqueness would follow from a claim that was proved in 1990 by Griess, Meier-
frankenfeld and Yoav Segev.
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