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Chapter 1

Introduction

11/03/2014

In this course we will mainly talk about non-commutative rings.
The assignments will be 25% of the final grade while the take home exam will be 75%.
Books:

1. Jakobson: Basic Alg II
2. Algebra: A gram algebra course: 1.M Isaac.
3. S.Lang - Algebra.



CHAPTER 1. INTRODUCTION




Chapter 2

Modules

2.1 Definition

A module is an additive abelian group.

Definition 2.1.1 If R is a ring (we will always talk about rings with identity), M is a module over R or a left
RxM— M

R-module if M is an additive abelian group and we have a map: () =5 o3 while a € R and z € M that
satisfies the following:

1. a(x +y) =axr+ay Ya € R, Vz,y € M

2. (a+b)z=azx+bx Va,b e R, Vz € M

3. (a-b)z=a(b-x) Va,be R, Ve e M

4. lp-x==x Ve e M

This definition seems very similar to a vector space, only instead of a field we have a ring, and that will be our first
example:

%\Example 2.1.2 () M = Vp = Vector space over a field F. R=F.
The operation of F' on V is multiplication by scalars.

Just as we have left R-module we can have also a right R-module:

Definition 2.1.3 If R is a ring (always we are talking about a rings with identity), M is a right R-module if
MxR— M
(z,a) —»x-a

M is an additive abelian group and we have a map: while @ € R and x € M that satisfying the

following;:
1. (x+y)a=za+ya Ya € R, Vz,y € M
2. z(a+b)=za+2b Va,beR,VreM
3. z(a-b)=(xr-a)b Va,beR,VzelM
4. z-1gp==x Ve e M

One, at first glance, would expect the definitions to be the same, but that will not be true for non-commutative
rings. For example the 3rd condition will have different results!

%\Example 2.1.4 () M =V = vector space over a field F', R = the ring of linear operators on V.
If o € R then ¢ (z +y) = ¢ (z) + ¢ (y), we can write this as a multiplication: ¢ - (z4+y)=¢p-z+¢-y.
So M is a left module over R.



2.2. HOMOMORPHISMS OF R-MODULES CHAPTER 2. MODULES

%\Example 2.1.5 () If M is any additive abelian group, we can regard it as a Z-module by defining:
For n € Z while n > 0 we define: n-2 =x + ...+ z and then we can define (—n) -2 = — (nz) and 0-z = 0.

ntimes

2.2 Homomorphisms of R-modules

Definition 2.2.1 (left R-module homomorphism) If M and N are both left R-modules, ¢ : M — N is a left
R-module homomorphism if:

1.Ve,ye M o¢(z+y)=¢(x)+¢(y) (pis a module homomorphism).
2. Vx e M,a € R ¢ (ax) = ap (z).

%\Example 2.2.2 () If V,W are vector spaces over F, then VW are an F-modules, and ¢ is an F-module
homomorphism if and only if ¢ is a linear transformation.

Another way to look at the second condition is to say that the operations a and ¢ commute.

%\Example 2.2.3 () If R is a ring then we can take M = RT = (R, +,0) (the additive group of R). Then, let
R act on itself through left multiplication then R is a left R-module over itself denoted by rR.

And also:

If R is a ring then we can take M = RT = (R, +,0) (the additive group of R). Then, let R act on itself through
right multiplication then R is a right R-module over itself denoted by Rg.

This is called the regular R-module.

Special case: Division ring. A special case is when R is a division ring (A ring which every non-zero element
has an inverse). Modules over division rings are more or less like vector spaces. All theorems on vector spaces that
don’t depend on commutativity and special field properties will hold. e.g. every module over a division ring has a
basis (uses the axiom of choice). Also, we can define the notion of dimension.

The additive condition of homomorphism (the first) can be define for any group, not even a module. This will be
a group homomorphism.

Definition 2.2.4 If M is a module, we define EndM ={o: M - M | p(z+y)=¢(z)+¢(y) Vz,y € M}.

It’s easy to show that: EndM is an additive group, and in fact is a ring with respect to composition and the identity
map is the identity element of EndM.

%\Example 2.2.5 () M is an EndM-module where ¢ - z is defined as ¢ ().
We have ¢ (x +y) = ¢ (z) + ¢ (y) so: ¢ (z+y) = px + py. We have: (¢ + ¢) = px + ¢z (the addition in EndM).
() (x) = ¢ () and for last: Id (z) = =.

In some sense this is a general example as if M is a left R-module, each a € R defines an endomorphism of R as:
a(z+y)=azx+ay

Get amap f: R — EndM, a € R, f (a) =endomorphism that a induces on M. ie. f(a)(x) = az.

In fact f will be a ring homomorphism so f (R) is a subring of EndM.

Theorem 2.2.6

If R is a ring, then R is isomorphic to some ring of the form EndM for some module(=additive group) M.

Proof: Take M to be RT = (R,+,0). Define L : R — EndM to be left multiplication, i.e. L (a) = ay where
ar, (z) = ax with a,z € R.

Clearly L is additive and multiplicative as e.g: L (ab) = (ab), and

(ab), (x) = (ab) - x = a- (bx) =ayr (b, (z))

associativity in R

8



CHAPTER 2. MODULES 2.3. REPRESENTATIONS OF RINGS

L (1g) =1d in EndM so (ab); = ar, - by, (composition in EndM).
Lisal—1asifar =bp then: a-1=ar(1) =b,(1) =b-1s0a=5b. R=L(R) C EndM. Meaning that
R — EndM. ]

Also, we call this image: Ry.

Remarks 2.2.7 If S is a ring and we have operation form S to EndM (M = ST) defined by right multiplication:
a €S, a— ar where ag (z) =z - a.

Then: ar (v +y)=(x+y)-a=za+ya=ar(x)+ar(y) and (a+b)gpx =2z (a+b) = xa+ xb = agr (x) + br ().
This gives an antihomomorphism of rings from S — EndM as: (ab)p () = z (ab) = brag (x) so: (ab) = brar
Meaning that antihomomorphism reverse the operation.

Definition 2.2.8 (Centralizer) In a ring S we define the centralizer of a subset A C S:
Cents (A) ={r eS| ra=arVa e A}

Theorem 2.2.9

(Assignment 1)
St = Centgpam (SR) and S = Centgnanm (SL)

Remarks 2.2.10 S;, = {ar, | a € S} while Sg = {ar | a € S} (multiplication form the left and multiplication from
the right).

Definition 2.2.11 For a set A, SymA =the group of all permutations on the element of A.

2.3 Representations of rings

Definition 2.3.1 Given a module M and a ring R, a ring homomorphism 7 : R — EndM is called a representation
of R.

Given a left R-module M we saw already that the map a +» ay, is a ring homomorphism from R to EndM.
So any R-module gives rise to a representation 7 defined in this way.

Conversely, given any additive abelian group M and a representation 1 : R — EndM we can regard M as a left
R-module via the representation 7 by defining for a € R,z € M:

a-z=n(a) (@)

Meaning R-module <= Representation of R.

In particular: gR = "The regular module" which is R regarded as a left module over itself by left multiplication
defines a representation we call the regular representation of R: p, a P ay, for a € R.

We defined a homomorphism of R-modules ¢ : M — N, so now, we can do this inside M. In particular we can
have an endomorphism ¢ : M — M of R-module M satisfying:

{cp(ery) = (@) +¢(y)
¢ (ax) = ap (v)

We call this set EndgM and clearly: EndgM C EndM.
In fact Endg M is a subring of End M.

%\Example 2.3.2 () V is a vector space over F i.e. an F-module EndrV = the ring of linear operators on V.

25,/03,/2014



2.4. SUBMODULES CHAPTER 2. MODULES

2.4 Submodules

Definition 2.4.1 An R-submodule N C M is an additive subgroup of N s.t. R- N C N.

%\Example 2.4.2 () Let V be a vector space over a field F. And let T € EndpV (linear operator on the vector
space).

We can view V as an F' [z]-module as follows:

fx)elF[z],veV:

So if f (z) = 3" a;a* then:

f(x)-v=Ff(T) () =aw+aTv+ aT?v+ ...+ a,T™v

What are the submodule of V'?
W is a subspace which is T-invariant <= W is a F [z]-submodule.

1 3 0
More concretely: If we take V = Q) and take T-v = [2 —1 0| v. For instance it is easy to see that the
0O 0 7
A

eigenspaces corresponding to A are T-invariant.
Take the char polynomial:

A—1 =3 0

-2 A+l 0 [=(A=-7[X-1)-6]=A-7)(N*=7)
0 0 A—7

We have three eigenspaces, one corresponding to the eigenvalue 7 and two corresponding to ++/7. And so, the

submodules of V' as an Q [r]-module where 7 (the number) acts on v via the matrix A.
——
=~Ql[x]

Remarks 2.4.3 If R is a ring, regarded as a left R-module. The Left ideals are the R-submodules.

2.4.1 Quotient modules

Definition 2.4.4 If N is a R-submodule of an R-module M, then we define M/N =quotient of M by N as additive
groups to be an R-module by defining for z € M, a € R:

a(N+2z)=N+a-x

Remarks 2.4.5 This is well-defined as if N+a = N+a’ thenx—2’ € N. Soa (z —2’) € N So: N+ax = N+az'.

2.5 Isomorphism Theorems

We will start with 2 isomorphism theorems for R-modules.
Theorem 2.5.1
Let M be an R-module.

1. Let N1 and Ny be R-submodules of M. Then:
y1 + No % y1 + N1 N No, y1 € Ny

Defines an isomorphism of: N+Nz/n, onto Ni/NiAN>.

2. If PC N C M R-submodules. Then N/p are R-submodules of M/p and (z + P)+N/pw— x+ N for x € M is
an isomorphism: (M/P)/(v/p) onto M/N.

10




CHAPTER 2. MODULES 2.6. ARTINIAN & NOETHERIAN MODULES

Remarks 2.5.2 The usual basic homomorphism theorem holds, i.e. if M, N are R-modules and ¢ : M — N an
R-homomorphism then ker ¢ is an R-submodule and if ¢ is surjective then: M/kero = N.

Proof: The proofs are straight-forward, We will only show that 1 is well-defined.

Suppose y1,y; € Ny if:
y1+ N2 =y; +No

Then y; — y} € N but it is also an element of Ny so y1 —y; € NyN Ny andso: y1 + NN No =9y, + NN Na. ®

Remarks 2.5.3 Any additive group A can be regarded as a Z-module. In that case the Z-submodule are simply
the subgroups of A .

2.6 Artinian & Noetherian modules

Definition 2.6.1 A module M is called Noetherian if it satisfies the “ascending chain condition” i.e. if every
ascending chain of submodules stabilizes. i.e. if:

My C My € M3 C ...
inside M then:
dk . Mk:Mk+1:Mk+2:...

Definition 2.6.2 A module M is called Artinian if it satisfies the “descending chain condition” i.e. if every
descending chain of submodules stabilizes. i.e. if:

My D My D Mg D ...
inside M then:
Jk : Mk:Mk+1:Mk+2:...

Definition 2.6.3 A ring R is left-Noetherian if every ascending chain of left ideals stabilizes.

Definition 2.6.4 A ring R is left-Artinian if every ascending chain of left ideals stabilizes.

And of course we can talk about right-Noetherian and right-Artinian. The interesting part is that all these combi-
nation can happen, a ring can be left-Noetherian without being right-Noetherian.

%\Example 2.6.5 () Z is Noetherian but not Artinian.
Note that:
7252225472582 D ...

Is an infinite descending chain.
On the other hand if we have increasing chain then:

LCLCI3C...CZ

Then I = |J I; is an ideal in Z and so I = nZ for some n € Z and so 3k where n € I so Iy = Ij41 = ... = .
j=1

More generally we can say:

Claim 2.6.6

If R is a PID, then R is Noetherian.

Proof: The same proof as for Z. [ |

11



2.6. ARTINIAN & NOETHERIAN MODULES CHAPTER 2. MODULES

%\Example 2.6.7 () Let p be a fixed prime, Take a look at the following ring:
P_{ﬂ“ m € Z, keZ}
p

This is a subring of Q (regarded as a Z-module) which is neither noetherian nor artinian!
7, C P, so:
7227247 O ...

This is an infinite descending chain of Z-submodules in P.
But also, we can look at:

ZC-ZC—=ZC...

1
F

"=

Is an infinite ascending chain.
Remarks 2.6.8 Any finite module will be both noetherian and artinian.
Remarks 2.6.9 A finite dimensional vector spaces over a field F' is both noetherian and artinian as an F-module.

Remarks 2.6.10 A vector space of infinite dimensional over field F' is neither noetherian nor artinian.

Theorem 2.6.11

If N is a submodule of a module M. Then if M is noetherian(/artinian) then so are N and M/N and any homomorphic
image of M.

We will prove for noetherian, for artinian the proof is the same. Proof: Clearly any chain of submodules of N is
also a chain for M-so property holds.

Now, suppose we have a chain of submodules of M/n:
PCPRCPC...CMN
By homomorphism theorems there are submodules N C P, C M s.t. P, C Pi/N . Moreover:
PPCPCPC...
So this chain stabilizes, so also P;. [ |

Theorem 2.6.12 (The converse)

If M is a module, and N is a submodule s.t. N and M/N both noetherian(/artinian) then so is M.

We will prove for noetherian, for artinian the proof is the same.

Proof: Suppose P; C P, C P3 C ... an increasing chain of submodules in M then: NN P, C NNP, C...isan
increasing chain of submodules in V. and so it stabilizes so we have k such that:

NNP,=NNPyy =...

Now, we also know that: (N+P1)/nN C (N+P2)/n C ... is increasing chain of submodules in ¥/~ and so stabilizes, so
we have [ such that:
(N+P)/N = (N+Piy1)/N = ...

Let r = max {k,{}. From the isomorphism theorem:

(N+P)/N = Pr/NnP, = Pr/NAP. 4,

(N+Pri1)/N 2 Pry1i/NAP.4y

Hence:
Pr/NAP 1 & Prt1/NAP, 1= Po=Prys

As required. [ ]

12



CHAPTER 2. MODULES 2.7. FREE MODULES

Theorem 2.6.13
If M and N are both noetherian(/artinian) then so is M + N.

Proof: We have:

quotient of M and so noetherian. N and M+N/n are noetherian, and that implies that M + N noetherian from the
previous theorem. [ |
Definition 2.6.14 (Finitely generated) M is a finitely generated R-module if 3z1,...,z, € M such that:

M = Rxy + Rxs + ...+ Rx,,

Theorem 2.6.15
If R is left-noetherian then so is every finitely generated left R-module.

Proof: Let M = Rz1 + ...+ Rz, then each Rz; is homomorphic image of R as a left R-module: a € R, a +— az;.

So M is a finite sum of noetherian modules, and thus noetherian. [ |

Exercise: If R is noetherian and M is an R-module then M is noetherian <= every submodule of M is finitely
generated.

2.7 Free modules

Definition 2.7.1 Let M be an R-module, the set {eq},; is a set of generators for M if every element of M can

be written in the form: .

B = E aieq; for some a; € Rand oy,..., o €1
i=1

Definition 2.7.2 (Basis) If {e.},; is a set of generators for an R-module M we say it is a basis for M if
> aijeq;, =0 for a; € R, ay,...,a € I if and only if a; = 0 for all 4.

Remarks 2.7.3 We say that a set with this property (without being a generator) is “independent”.
Definition 2.7.4 ((Lang)) M is a free R-module if it has a basis.
%\Example 2.7.5 () Z/3z x Z is a non-free Z-module.

%\Example 2.7.6 () [l %z as a Z-module is not free.

p prime

01,/04/2014
Recall the definition from last week:

Definition 2.7.7 M is a free R-module if it is a R-module and has a basis (over R), and then rankM =
cardinality of basis (not well-defined).

And recall that a basis is a set {es}, and every element in M can be represented as > ajeq, for a; € R, and
daieq; =0 <= Vi a; =0.

xample 2.7. is a free Z-module as is a basis.

N\ Example 2.7.8 () Z is a free Z-module as {1} is a basi

On the other hand, Z/3z as a Z-module is not free. And so (%/3z) x any other module as a Z-module is not free.
Denote R™ = {(ay,...,a,) | a; € R}, then R™ is a free R-module, with basis: e; = (0,...,1,...,0).

13



2.8. UNIVERSAL PROPERTY CHAPTER 2. MODULES

Claim 2.7.9
‘ If M is a free R-module of rank n then M = R(™). |

Proof: If {z1,...,x,} basis for M, map z; — ¢; and extend to an isomorphism of R-modules. ]

Claim 2.7.10

Let M be any R-module. wui,...,u, € M then there exists a unique homomorphism from R to M sending
n
€; — Uj.

This claim is equivalent to the definition we gave, this is the “universal property”. We say that F' is a free if and
only if the above claim holds (where we replace F' with R(™ and exists a set of elements).

Proof: Define i (> ase;) = > a;u;. This define an homomorphism, and it is unique from the independence. [

Theorem 2.7.11

If R is commutative and R(™) =~ R then m = n.

Proof: Suppose wlog m < n and take (e1,...,e,) and (fi,..., fm) two bases inside R say.

n m
3b;; € R and Ja;; € Rst. fj =) a;.e; and e; = Y b; ; f;. Construct two matrices n x n:
i=1 j=1

a171 e al_,n
a271 e (IQ_’n
A = am,1 - Am,n
0 0
0 0
b1, bim 0 0
B = :
bn 1 bn,m 0 0

We get:

fj = Zaj,i (Z bi,kfk) = Zaj,ibi,k = 6j’k
: =1

i=1 k=1

ei = D bij <Z ajylel> = bijaj =0
J

j=1 =1 =1

By the second equation we get that BA = I. It is easy to show that over a commutative ring this means that A, B
commute and that B is also a right inverse for A.

But A - B has n — m rows of zeroes. So we get a contradiction. [ ]

Remarks 2.7.12 If R is non-commutative you can have R(™) = R(™ and m # n . If A’ = (a;;) and

mXn
B = (b;;) as in the previous construction. Get B'A’ = I,,«, and A’B’ = I,,,xm (ex. in Jacobson BAI page
169).

nxm

2.8 Universal property

Theorem 2.8.1

L F—5 O GHHE—WHTDas Ea o 5 y H Yo ael =

a 8
there exists a unique homomorphism p: F — M s.t. p(Za) = Ya-
14
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Corollary 2.8.2

‘ Any two free R modules with bases of equal cardinality are isomorphic.

Proof: If {x,},; is a basis for F', {x[,} a basis for ' then the map sending x,, — x, will be invertible and so an
isomorphism. [ |

15
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Chapter 3

Tensor product

3.1 Balanced product

Definition 3.1.1 (Balanced product) For a ring R, let M = Mp be a right R-module and N =r N be a left
R-module.

A balanced product of M and N is an additive abelian group P and map f : M x N — P such that Vxz,z’ €
M Yy,y' € N:

1L f(f[:-‘r!El,y) = f(:E,y)—i—f(:c’,y)
2. f(xay+y/) Zf({E,y)-i-f(fL',yl)
3. f(ar,y) = f(z,ry) Vr € R.

We denote this by (P, f).
%\Example 3.1.2 () M =N =7 = P. And the map: [ (z,y) =z -y.

%\Example 3.1.3 () Let Rbe aring, R™ = {(ay,...,a,) | a; € R} as aleft R-module (w.r.t coordinate-wise
multiplication on the left).

aj
(MR = : | | a; € R} is aright R-module.

am
Let P = M,,xn (R) as an additive group. And we define the map as:

aq a1b1 a1b2 60 albn
f 7(b17"-7bn) —

~— .
am, Matrix prod. ambl e 000 ambn

(P, f) is a balanced product.

3.1.1 Some claims
Claim 3.1.4

f(O,y):O:f(iv,O).

Claim 3.1.5

17




3.2. TENSOR PRODUCT DEFINITION CHAPTER 3. TENSOR PRODUCT

3.2 Tensor Product Definition

Definition 3.2.1 (Tensor product) A tensor product of Mg (right R-module) and g N (left R-module) is a
balanced product. (M ®g N,®) (We denote P = M ®g N and f = ®) such that for any other balanced product
(P, f) of M and N there exists a unique homomorphism ¢ : M @ g N — P s.t.

Vee M,VyeN: o(z®y)=f(zy)

Remarks 3.2.2 We are using the notation: ® (z,y) =2 ® y.
i.e. tensor product is a balanced product with a “universal property”:

MXNL>P

2

’
’
s

® 0
o e

M ®r N

Remarks 3.2.3 From uniqueness it follows that every element in M ®r N will be a finite sum of “pure tensors”

i.e. of the form: .
vai ® Yi
i=1

3.3 Construction of a tensor product explicitly

n
Let F be a free additive group on set of generators M x N (i.e. a set of formal finite sums > (x;,y;) where z; € M

=1
and y; € N ).
Look at the subgroup G in F generated by the following set of elements Vx € M, y € N, r € R:

(1) (z+2'y) — (z,y) — (2',y)
(2) (v, y+y) - (z,9) — (z,9)
(3) (zr,y) — (z,7ry)

Define M @ g N =F/a, z @y = (z,y) + G.
Clearly, (M ®r N, ®) is a balanced product by definition of G . Now we show it satisfies the universal property:

Let (P, f) be a balanced product of M and N. As F is a free group, there is a unique homomorphism of groups
Y :F— Pst ¢(z,y)=f(x,y) where x € M and y € N.

Let ker¢p = K. For (z,y), (2',y) € M x N we have:

1/)(I+$/,y)—1/)(17,y)—1/)(17/,y):f(ZZT—FZC/,y)—f(ZZ?,y)—f(ZZ?/,y) \:’, 0

fis a balanced product

So:
1/} [(.CC + xlvy) - (Z,y) - (xlvy)] =0

Meaning all the elements of type (1) are in kert. Similarly all the elements of type (2) and (3) are in ker¢. So
ker 1 contains all the generators of G and so G C ker. So ¢ induces a homomorphism ¢ from M ®r N = F/a to
P.

pey)=p((z,y)+G)=v¢(r,y) = f(2,y)

Since G C ker v this is a well-defined homomorphism. And can show it is unique.

18



CHAPTER 3. TENSOR PRODUCT 3.4. EXAMPLES

3.4 Examples
%\Example 3.4.1 () ™Regr R™ = M,,, (R).

%\Example 3.4.2 () If V and W are vector spaces over a field F' with bases {va}, {wg} respectively then
Vo € basis for V' }

V ®p W is the vector space with basis {va ® wg | we € basis for W
B

In particular, if dim V, dim W < oo then:

dmV @ W =dimV - dim W

%\Example 3.4.3 () If M is an additive group, we can regard M as a Z-module.
We can construct a tensor product:Q ®z M. This is an additive group and we can regard it as a Q-module i.e. for
rs€Qs(rez) = srez, Q®z M is a vector space over Q.

def.
M—=QezM,z—1Q.

In general, if R C S subring, and M is an R-module, extend M to an S-module by: S ®g M = M’ and define
51 (82 @) = 5182 ® .

19
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Chapter 4

Group theory theorems with R-modules
analogues

4.1 Normal Series
Definition 4.1.1 (Normal series) A normal series for a group G is a chain:
1=Gs4+1<Gs1...9G1 =G

Gi+1 <1 G; Vi

Definition 4.1.2 Two series are equivalent if can permute indices to give isomorphic quotients. i.e. Given also
1=Hiy < He Q...< H = G. Then the 2 series equivalent if ¢ = s and we have correspondence i — i’ s.t.
Gi/Gipn = Hit[Hy+1.

%\Example 4.1.3 () For example:

1 1 C3<103x0C5<xC3x%xCsxCr
1 1 Cs5<1aC5xCr<1C3xCsxCr

Look at the quotients:

1 < C3<103xC5<xC3xCy5xCr Cs,C5,Cr
1 < C5xaC5xCr<C3xCsxCr C5,C7,Cg

It’s clear these two are not the same series, but they are equivalent by our definition.

Definition 4.1.4 (Refinement) A series {G;} is refinement of a series {H;} if {G;} D {H;} (i.e. {H;} are
subsequences of {G;}).

Definition 4.1.5 (Composition series) A composition series is normal series which has no nontrivial refine-
ments.

%\Example 4.1.6 () Both of the series:

1 1 C3<103x0C5<xC3x%xCsxCr
1 1 C5<10C;xCr<1C3xCsxCr

Are composition series, but equivalent.

In modules we can define:
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Definition 4.1.7 A series of an R-module M is a chain of R-modules s.t.

=M1 <M;<...<aMy =M

4.1.1 Schreier Refinement theorem
Theorem 4.1.8 (Schreier Refinement theorem)

Any two normal series for a finite group have equivalent refinements.
Any two series of R-submodules have equivalent refinements.

Remarks 4.1.9 If N < G and H < G a subgroup, then N - H = H - N is a subgroup as well.

Lemma 4.1.10 (Zassenhaus’ Lemma (Butterfly Lemma))
Let G1, G2 be subgroups of a group G, And let H; << G; for i = 1,2. Then:

H, (Gl QHQ) < Hy (GlﬁGQ)
(Hl ﬁGQ) Hy <« (Gl ﬂGQ) Ho

And we have:
H1(GiNG2)/H, (G1nH,) 22 (G1NG2)H2 /(H,nG,) H

G1 G2
Hy(Gy N Ga) Ha(Gy N Ga)
G1 NGy
Hl(Gl ﬂHQ) HQ(Hl ﬂGg)
(H1 N G2)(G1 N Hy)

H1 H2

\ /

H1 ﬂGg GlﬁHQ

Proof: Note that every coset of Hy (G1 N Hz) in Hy (G1 N G2) can be represented by an element of G; N Ga, as if
xy € Hy (G1 N G2) with € Hy and y € G; N G then:

IyHl (Gl N HQ) = IHly (Gl n HQ) = Hly (Gl n HQ) = yHl (Gl N HQ)

normality normality

Similarly, any coset (Hy N G2) Hy in (G1 N G2) Hy can be represented by an element in G; N Ga so for y € G1 N Gs.
Map: y - H; (G1 N G2) — y (H1 N G2) Hy and verify this is an isomorphism. [ ]

Proof of Schreier Refinement Theorem:
Proof: Given two normal series of finite length:

1 = Gs11<Gs<...49G =G
1 = Ht+1<]Ht<]...<H1:G
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We show these series have equivalent refinements.

Denote G;, = G;11 (G; N Hy) and Hy, = (Hy N G;) Hppq where 1 <k <t+1and 1 <i<s+1. By Zassenhaus
we have that: G, ,, < Gy, and Hy,,, < Gy, and: Giy/Gi, | = Hei/Hy .

Tht1 i1 ikl

G
N
Gy, = G |Gn H | =Gi+1Gi=G;

H, = Hy
1

~ =
G = Giq1 |GiNHy | =Gipa

Gt

We now get two normal series of length s - ¢:

G = G >GL,>...0G, = G DGy >...>Gg, =1
G G21
H = H; >...
~—
Hll
These will be equivalent because of the isomorphisms of Gi/G,, | = Hei/H,, | with (i)' = k;. |

%\Example 4.1.11 ()

1 < Z/3z<Zfez

1 < Z)2z < Zfez
%\Example 4.1.12 () Z has no composition series as a Z-module.

quotient of order 3Z O 3Z D9Z D ...
quotient of order 5Z O 5Z D 25Z D ...

Two infinite series which do not have equivalent refinements. Each quotient is of prime order.

%\Example 4.1.13 () 1< ((12)(34)) <« Vi < Ay < S4. Composition series (V4 is Klein 4 group).

4.2 Jordan Holder Theorem

An immediate consequence of the Schreier Refinement Theorem is the Jordan Holder theorem:
Theorem 4.2.1

Any two composition series for a group/R-module are equivalent.

Proof: User Schreier refinement theorem (and throw out trivial quotients). [ |

Definition 4.2.2 (Irreducible module) An R-module M (group G) is irreducible (simple) if it has no nontrivial
submodules (normal subgroups).

Remarks 4.2.3 In a composition series, all quotients will be irreducible.

Theorem 4.2.4

A module M # 0 has a composition series <= it is both noetherian and artinian.
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Proof: Suppose M ha a composition series:

MZMlDMgD...DMS+1:O

And suppose an arbitrary series of submodules:

M=N1DNyD...DODN;D...

Look at the sequence that ends with a 0:

M=N;DNyD...ON; DO

Then, this has a refinement equivalent to our composition series. So ¢t < s.
Similarly, every increasing sequence has length < s. Thus M is both artinian and noetherian.

Now we want to show the other direction. Assume M is noetherian and artinian. M = M; has a proper maximal
submodule My (otherwise we have an infinite increasing chain). Ms is also noetherian so has a maximal submodule
Mj. Get descending chain:

M=M DMy>DM3D...

Which must be of finite length as M also artinian. So we got a composition series. ]

4.3 Krull-Schmidt Theorem

Definition 4.3.1 (Indecomposable module) M is indecomposable if it has no nontrivial submodules My, Ms
s.t. M = M1 D MQ.

Remarks 4.3.2 Clearly irreducible—indecomposable. But not the other way around.

%\Example 4.3.3 () Z is not irreducible as a Z-module. But note that it cannot be that Z = M; & Ms
~— =~
nZ m7Z

because nZ N'mZ # 0 (unless n or m = 0).

Note:

Given R-modules M3, ..., M, we can construct My X ... X M = M with coordinate-wise operations
Get R-homomorphisms: 4; : M; — M the natural injections and p; : M — M the natural projections.
ej =1pj: M — M. e; € EndM:
e = i; (pjij) pj = ¢

——

le
So e; is idempotent.
If j # k then:
ejex = ij (pjix) pr, =0
——
0
So e1, ..., ey are orthogonal idempotents. And: e; + ...+ ex = 1as. Denote e; (M) = MJ’ = M;.

If z € M then:
r=1yr=ex+...4+ erx
~~~ ~~

€M €M,
So M is a direct sum of submodules M7,..., M. M = M{ & ...& M| as we have:
Min (M| =0
7k
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Conversely, given M = My & ... & M where M; are submodules. Can define injection and projections:

ZJ]\/[l - M
pjij\/[ - M;

s.t. e; € EndM idempotents, orthogonal and e; + ...+ ¢ = 1.

Conclude: M # 0 is indecomposable <= EndM does not contain a non-trivial idempotent (i.e.# 0, 1)

Proof: Clearly showed that if M =nontrivial direct sum, then EndM has nontrivial idempotents. M = M; & Mo.
e1 +ex =1 and e (Ml) = M>5 and ey (Mg) = M.

Now, assume e € EndM, nontrivial idempotent. Define e (M) = My, (1 —e) M = My and get My & My = M.
erea=c(l—e)=e—e>=0

Mo, My # 0 as if M7 =0 then e = 0 contradiction.
And if Ms =0 then 1;; — e =0 giving e = 1) contradiction. [ |

Remarks 4.3.4 EndZ = 7 contains no nontrivial idempotents.
29/04/2014

4.4 Indecomposable

Remarks 4.4.1 Decomposition to direct sum of finite number of indecomposable is generally not unique.
e.g.

1 0 0
R? = span 0 @ span 1 @ span 0
0 0 1
but also:
1 0 0
R3 = span 1 @ span 1 @ span 0
0 0 1

But here we do have isomorphisms between components.

We shall need a string condition on EndM we get uniquness up to isomorphisms of decompositions.
Recall that:

Definition 4.4.2 A ring R is local if the set of non-units is an ideal.

. 1 0 0 0 1 0
%\Example 4.4.3 () M>(Q) is not local as: (0 0) + (0 1) = (O 1)
but:

S’:{%| m,neZ,n#O,W(n}

is local. 25 =set of non-units and is an ideal.

Remarks 4.4.4 Local rings do not contain idempotents # 0, 1.

Definition 4.4.5 (Strongly indecomposable) M is strongly indecomposable if EndM is local.

Theorem 4.4.6
If M has 2 decomposable Ny&...®N; = M = M, &...® My, where N; are indecomposable and the M; are strongly

fnﬂﬂnnmpnqgh’n then k — ] and there exists a pnrmnfﬂf{nn _;r Y j/ gt 7\/[J- o 7VJ
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%\Example 4.4.7 () 7Z is indecomposable but not strongly indecomposable as EndZ = Z not local.

Lemma 4.4.8

Suppose M, N modules, f : M — N homomorphism. M # 0, N is indecomposable, g : N — M homomorphism s.t.
gf automorphism (of M), then f and g are isomorphisms.

Proof: Suppose k inverse of gf so kgf = 1.

Letl=kg: N — M, lf =1 so f is left invertible.

Look at fl =e, e? = flfl = f(If)l = fl = e, so e is idempotent. As N is indecomposable, it must have e = 0 or

e=1. Now [f = 1) so we cant have e = 0 because then: 1), = (lf)2 =1flf =1(fl)f. Soe#0soe=1and f is
g

also right invertible (I is its right inverse) and so an isomorphism. Now g = k~!f~! so g also an isomorphism. M

Now we want to prove the theorem: Proof: By induction on k.

k =1 then M = M; indecomposable so I =1 and N; = M;.

Now assume for any m < k and prove for k.

Define projections: e; : M — M for 1 <j<kand f; : M — N; for 1 <j <.

Look at: h; = fje1 : M — Nj and kj = ey f; : M — M, then

l
D okihy =Y efifier=ei | Y [T |er=erluer = e
= by
J

: : . — . N X — L
Restricting ey to Mi: e |a, = €Y, kj |ny= K}, hy [ar,= 1.

So > kih} = e} and €} = 1y, and M is strongly indecomposable. EndM; is local, so we cannot have everyone of

the k%h% non-units. So 3j s.t. kih} is automorphism of M;.

Now, use the lemma, WLOG suppose j = 1, h, k] must be isomorphisms. h} : M7 — Ny so M1 = Nj.

Remarks 4.4.9 Note: we are not done yet, as we can have M; = N; but M/m, % M/N, . e.g. M is infinite
dimensional vector space with basis {z;};-, and span {z2,z3,...} = span{zs,z4,...}.

M1 Nl

Claim 4.4.10
M=N®MsP...H My . |

First show NyN (M2 @ ... & M) =0,Let 2 e NN (Mo @ ... & M), e1(x) =0asz € Ma® ... M. f1(x) =2
as & € Ny. ki () = e1f1 (z) = 0, but k] is an isomorphism from Nj to My, so this implies 2 = 0.

It remains to show that M; C N1 My @ ... D M, = M'. Let z € Ml, note that e; (Nl) = 61f1 (Nl) =k (Nl) =
k' (N1) = Mj, so there exists y € N7 s.t. = e1 (y) hence:

Zei (y) =y

.
—

So we get:

So now we do have:
NQEB...EBngIM/Nl2M2EB...EBM]§

And get our result by induction. ]
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4.5 Fitting’s Lemma

Lemma 4.5.1 (Fitting’s Lemma)
Let M be both artinian and noetherian, and f € EndgM. Then M = f>° (M) @ f~°° (0) where

fZM) = e f" (M)

70 = Jkers”
n=1

And f |fee(ar) is an automorphism and f |- o) is nilpotent.

Proof:
M 2 f(M)Df*(M)D...
0 C kerfCkerf?C...
Since M is artinian and noetherian, both chains stabilize. So 3r s.t. f"(M) = fr* (M) = ... = f<(M),
ker f" (M) =ker fr™H (M) =...= f~°(0).

Suppose z € ker f7 (M) N f7 (M). Then, 3y € M s.t. z = f" (y) and f7 () = 0 giving f?" (y) = 0 so y € ker f?" =
ker f" hence z = f" (y) = 0.
Now, take € M, we show that x € f> (M) & f~> (0).

7 (@) € f7 (M) = 7 (M)

sodyeM: fr(x)=f?"(y). So f"(x— f"(y)) =0. Sox — f" (y) € ker f".
x € ker fT @ [T (M)
f=(0)  feo(M)
We now show f |-« () is nilpotent.

For all z € f~°°(0) = ker f7, f" (z) = 00 (f |f-=(0)) = 0.

We show f |fe(ar) is an automorphism:
F M) = [T (M) = [ (M)

So f [ fe(ar) is surjective.
Suppose x € f* (M) and f(xz) =0soxz €ker f C f7°°(0) so 2 = 0. So f |f)as is injective and surjective. [ |

%\Example 4.5.2 () Counterexample:
Let V be an infinite dimensional vector space over a field, {z;};-, basis. So V neither artinian nor noetherian.

f is a linear operator that project onto span {x;}. i.e. if z = Ele ciz; then f(x) = ciay.
g is the linear operator g (z) = Zle CiTit1-
Let T = f 4+ g. What is its kernel?
k
If T (x) =0 then f (2) + g (z) =0. If z as above T (z) = c121 + > ¢ixit1 = ¢1 (1 + X2) + cox3 + . .. + CkTpt1

i=1
implies ¢; =0 for all i sox =0 and ker T =0 —-T->°(0) =0 .
But note that:

T (V) = span{zi + x2,23,24,...}
Tz(:z:) = T(cr(z1+22) +coxs+...)=cix1 +cr1x2 +c1ws +caca + . ..
T?(V) = span{x; + x3 + 23,24, T5,...}

0

D)
S
3
S
I
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Remarks 4.5.3 Applying Fitting’s lemma to a finite dimensional vector space and operator T' we get some r s.t.
V=T"(V)®kerT" (both of them are T invariant subspaces).

In particular, if T'= A — AI where A is a matrix and A an eigenvalue, then ker T is the generalized eigenspace for
A

We can decompose the T (V') subspace w.r.t. A — ul where p is another eigenvalue.

Continue decompose V' to generalized eigenspaces of A and get the Jordan decomposition of the matrix A.

Corollary 4.5.4

Let M be indecomposable, artinian and noetherian. Then every endomorphism of M is either nilpotent or an
isomorphism - in fact M is strongly indecomposable.

Proof: Let f € EndM.

By Fitting’s lemma M = f°° (M) @ f~°°(0), but M is indecomposable, so one of these submodules is 0 and
M = f°° (M) and f is automorphism or M = f~°°(0) and f is nilpotent.

It remains to show that EndM is local.

The set of non-units = set of all nilpotent endomorphisms.

Remarks 4.5.5 If f is nilpotent, f # 0, then Ir > 2 f" =0 and f7~' # 0 so f cannot be invertible.

Remarks 4.5.6 In a commutative ring we have f, g nilpotent, taking k large enough (f + g)k = 0 as we get linear
combinations f*~!gl.

Corollary 4.5.7

Let M be an indecomposable module that is both artinian and noetherian. Then every endomorphism of M is
either an automorphism or nilpotent and in fact EndM is local, i.e. M is strongly indecomposable.

Proof: We showed that every endomorphism is nilpotent or an automorphism. It remains to show that the set of
nonunits in EndM is an ideal. 7 = {f € EndM | f is nilpotent}.

Let f € I, g € EndM then go f and f o g are not invertible. As if f # 0, f* =0 and f*~! # 0 then (gf) f*~1=0,
=1 (fg) =0.

So if say gf is invertible and h is inverse, we would have w fF=1 = k=1 = 0 contradiction.

1
Suppose that fi,fa € I, fi + fo ¢ I so f1 + f2 automorphism. So we have g € EndM such that g (f1 + f2) =
(fi+f)g=1

Let h; = fig. so h; € I and so it is nilpotent, thus exists k s.t. h¥ = 0. we then have (1 — h;) (1 +hi+hi+... + hf_l) =
——

invertible

1. But h; + ho = 1 so hs is invertible. Contradiction. [ |

Theorem 4.5.8
If M # 0 is both artinian and noetherian then M contains indecomposable submodules M; s.t. M = M1 ®...® M,,. |

Proof: As M is artinian and noetherian, it has a composition series. By Jordan-Holder, any two composition series
are equivalent and so the length is well-defined.

We prove the theorem by induction on the length £ (M) of a composition series.
If £(M) =1 then M is irreducible and so indecomposable.
Now assume ¢ (M) > 1. if M is indecomposable we are done.

So now assume M not indecomposable. So M = Ny & Na. Ni, No # 0. We claim £ (N;) < £ (M) as if we form the
chain 0 C N; C M which can be refined to a composition series giving ¢ (N;) < £ (M).

So now, using induction hypothesis on Ny, No we get that M is direct sum of indecomposable. [ |

We got:
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Theorem 4.5.9 (Krull-Schmidt Theorem)

Let M # 0 be both artinian and noetherian and suppose N1 ® No @ ... & Ny =M = M; & ... My, then k = [ and
we have permutation ¢ — i’ s.t. M; = N.

Wedderburn - 1909 proved for finite groups with a gap, and Remak in 1911 filled the gap.

Krull in 1925 proved for abelian groups with operators, modules over rings, and Schmidt in 1928 proved for arbitrary
groups.

4.6 Completely Reducible Modules

Theorem 4.6.1

The following are equivalent:
1. M is an irreducible right R-module.
2. M # 0 and M is generated by any x # 0 as a right R-module.
3. M = R/r with I max right ideal in R.

Proof: 1 = 2: clearly if # # 0, x R= right R-submodule. So if x # 0 must have xR = M.

2 = 3: Take x € M, z # 0 and the map a % za module homomorphism R — M. Imp = M as xR = M,
I = ker p= right ideal and it is maximal. As otherwise would have b € R, I’ := bR+ I C R. But then /1 would
correspond to a submodule N in M, N := ¢ (I'), N = I'/r so would have y € N in submodule but yR = M by
condition 2.

3 = 1: If I is maximal, clearly ®/r must be irreducible as if it had a submodule N # 0, M would have corresponding
right ideal I’ :0 C I C I’ C Rand I'/1 = N. [

4.6.1 Schur’s Lemma
Theorem 4.6.2 (Schur’s Lemma)

Let M, N be irreducible module. f € Hompg (M, N), then either f =0 or f isomorphism. In particular: if M = N,
Endg (M) = division ring and if M = N, Homp (M, N) = 0.
——

~Hompg (M,N)

Proof: Take f # 0 in Hom (M, N). ker f is a submodule of M, ker f # M as f # 0, M is irreducible so get
ker f = {0}. Imf is a submodule of N, f # 0 so Imf # 0. N is irreducible so we get Imf = N so f is an

isomorphism as required. [ |

%\Example 4.6.3 () V is a finite dimensional vector space over a field F. R = Endp (V) & M, (F).

Endg (V) = set of all linear operators that commute with every other linear operator = center of M, (F') (= set of
scalar matrices & F).

V is an irreducible R-module as given any 0 # v € V and w € V then exists ¢ € Endp (V) s.t. ¢ (v) = w so
Rv =V. So by Schur’s Lemma, Endg (V)= a division ring = center of M,, (F) so commutative, so it is a field.

Definition 4.6.4 Suppose { M4}, 4 is a set of submodules of a module M. Denote by > M, = set of all elements
a€cA
of the form zo, +...+Zq,. @; € A, x4, € M,,, i.e. finite sums of elements in the M,, so Y. M, will be submodule

acA
of M.

Definition 4.6.5 S is independent set of submodules if M, N > Mg | =0forallac A
peA
B#a
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ASY Example 4.6.6 () {za},c4 isindependent set of elements iff { Rz}, 4 are an independent set of submodules.

Claim 4.6.7
‘ If S = {Ma} ¢ 4 is dependent, then there exists a finite subset of S which is dependent.

Proof: We have o s.t. M, N (Z M3> #0,s0 3z, € My and zg, € Mg, 1 <i < kst zq =28 +...+ T3,
pa

k
and then M, N <Z M5i> # 0so {My, Mpg,,...,Mp,} is dependent set. [ ]
i=1

Claim 4.6.8
If T independent subset of S, then there exists Ty, T C Ty C S, s.t. Ty is maximal independent containing T'.

Proof: Using Zorn’s Lemma, look at the set B={B C S |T C B and Bis independent} . B # @& as T € B. Given
any chain in B: B C B’ C ... the union B* will be in B, otherwise we would have B* dependent and so a finite
subset of B* would be dependent and contained in an element of the chain.

Thus by Zorn, B has maximal element. [ |

Definition 4.6.9 (Direct sum) If M = >  M,, {M.},., independent, We say M is a direct sum of the M,
acA
and write M = @ M,,.
acA

Definition 4.6.10 (Completely reducible) M is completely reducible if it is a direct sum of irreducible sub-
modules.

e.g. any irreducible module is completely reducible!
Lemma 4.6.11
Suppose {Mu} 4 independent set of submodules of M and N submodule of M s.t. N N ( > Ma) = 0, then

acA
{Ma} e s U{N} is independent .

Proof: Suppose not, then we have 8 € A and 0# 23 € Mg s.t. 3 = y+xq, +...+2q, for somey € N, z,, € M,,,
a; € A.
k
Then y = 2, + ...+ To, — 2 € NN (Zle M,, +M5) =0soy = 0. giving 3 € > M,, contradiction to
i=1

independence. [ |

Lemma 4.6.12

Suppose {M4},c 4 independent set of irreducible submodules and M =}
and let N C M submodule.
Then there exists a subset B C A s.t. {N}U {Mps},p is independent.

aca Mo (i.e. M completely reducible).

Proof: Assume first N = M - trivial. So now N # M. Define B = {B CA{NUMg}yep is independent}.

B # @ as if M # N then we have a s.t. M, ¢ N, in which case M, "N = 0 as M, N N is a submodule of M,
which is irreducible. So {N, M,} independent and {a} € B.

We will continue this next week.... [ |

Corollary 4.6.13

Taking N = 0 we get that if M =sum of irreducibles.
Then M = direct sum of the irreducibles.
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Corollary 4.6.14

mplctely

v ‘ T P rr
aiMsisdillliaomplesisrtad bt this corollary is true as well.

%\Example 4.6.15 () Let V be a vector space over a field F, we can write V = > Fz. Each Fz is a one
zeV
dimensional subspace, and so it is irreducible. By the first corollary, V is a direct sum of some of the Fz, i.e. V

has a basis.
Lemma 4.6.16

Suppose M is a module s.t. its lattice of submodules is fully complemented. Then so are L (N) and L (M) where
N is a submodule of M and M is homomorphic image of M.

Remarks 4.6.17 We define L (M) ={N | 0 C N C M submodule}.

Proof: Let P C N be a submodule of N so it is also a submodule of M and so has a direct complement P’.
M=PoP.
And then, P’ N N is a direct complement for P inside N as:
N=(PaP)NN=(PNN)®(P'NN)
——
P

Now let M = M/p with P submodule. Since P has a direct complement in M, P'ie. PP®P =M. Then P' = M.
By what we already have shown, L (P’) is fully complemented, and so L (M ) [ ]

Lemma 4.6.18
Suppose M # 0, L (M) is fully complement. Then M contains irreducible submodules.

Remarks 4.6.19 Z has no irreducible submodules.

Proof: Let z # 0 be in M and look at N'={N | N submodule of Mand z ¢ N}. By Zorn, N contains maximal
elements. Let P be a maximal element in N.

Let K be a direct complement for P in M: K & P = M. We claim that K is irreducible.

Suppose K = K’ @ K", we want to show that one of these has to be 0. Assume towards contradiction that
K K'#4£0. PCPoK ,sox e PPK'. AndPC P® K" sox € P® K". We can write po + k" =2 =p1 + ¥
for p1,p2 € Pand k' € K/ and k" € K”. Then:

pr—po=K k' =p—p=0=k -k =0=k =k >k =0=Fk'
—_—— =

cpP eK

Then we get z = p; € P, contradiction. [ |

Theorem 4.6.20

The following are equivalent for a module M :
1. M =) M, where M,, irreducible.
2. M is completely reducible.
3. L (M) is fully complemented.

Proof: 1 = 2: by corollary 4.6.13.
2 = 3: by corollary 4.6.14.
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It remains to show 3 = 1: By lemma 4.6.18, M contains irreducible submodules. Let:

M = Z N

Nirreducible submodule of M

We claim that M’ = M. Suppose M’ C M then M’ has a direct complement 0 # M"” st. M' & M"” = M. By
lemma 4.6.16, L (M") is fully complemented and so by lemma 4.6.18, M" contains irreducible submodule P # 0.

But then P is also an irreducible submodule of M and so P C M’, contradiction (as the irreducible submodules of
M are in M"). [ |

Definition 4.6.21 Let M be module, N an irreducible module:

M (N) = homogeneous complement of Mdetermined by N

= > N’
N' C M submodule
N' =N

Remarks 4.6.22 If M is not submodule isomorphic to N then M (N) = 0.

Theorem 4.6.23

Let M = @ M,, M, irreducible submodules. Then:
acA

1. For any N # 0 irreducible submodule of M we have:

2. M= P M (N) (sum runs over representative of all isomorphism types of irreducible modules).
N irreducible
N #0
And of converse if N % P then M (N)N M (P) =0.

Proof: M (N)2 @ M, is trivial.
Mo=N

It remains only to show M (N) C @ M,.
Mo=N

Let N’ be a submodule of M which is isomorphic to N. We need to show that N’ C @ M,.
Mo=N

As N’ is irreducible it is generated by a single element N’ = Rx. Since M = @ M, , there exists ay,...,ar € A
a€cA
st. NN C My, &...0 M,,.

Using projections 7, determined by the direct sum decomposition of M we get:
N' C 7oy (N) D 7oy (N)D ... D T, (N)

Since M, is irreducible for any «, 7, (N') submodule of M, so equal to either 0 or M. In fact by Schur’s Lemma,

each 7o, |n homomorphism from N’ to M,, (both of which are irreducible) will be either 0 or an isomorphism.

Not all will be 0, as N’ C 7w, (N') @ ... B 7o, (N').

If N = N then N’ Csum of some of the M,that are isomorphic to N. As if Ma, = N’ (74, |n/=isomorphism).

Then M,, 2 N' = N. So N’ is indeed contained in € M,,. [ ]
Mo=N
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Chapter 5

Structure theory of rings

5.1 Structure theory

Any left R-module, M gives rise to a representation p : R — EndM by defining: p(a)z = a - z. Likewise, every
representation of R into additive group M determines an action of R on M turning it into an R-module.

kerp={beR| b- M =0} = anngM 2-sided ideal in R.

Definition 5.1.1 p is a faithful representation if ker p = 0.
M is a faithful module if anngM = 0.

For any x € M define: anngz = {a € R| ax = 0}. This is a left ideal in R.

Definition 5.1.2 A representation p is called irreducible if the corresponding module is irreducible.

Claim 5.1.3

anngM = () anngz.
zeM

Claim 5.1.4
Rz = R/annga (as left R-module).

Definition 5.1.5
1. R is primitive if it has a faithful irreducible representation.

2. R is semi-primitive if for any a # 0 in R there exists an irreducible representation p s.t. p(a) # 0.

Clearly, primitive=- s semi-primitive.

Definition 5.1.6 R is a sub-direct product of rings {R4},c 4 if R can be embedded in [][ Ry. i : R = [[ Ra, s.t.

if pq is projection, po : [[ Ra — Ra, then i, = pyi is surjective from R onto R,.
aER

%\Example 5.1.7 () R is a sub-direct product of R with R, a € R, a N (a,a) embeds R in R x R.
p1 (CL, b) = a.
b2 (CL, b) =b.

%\Example 5.1.8 () Z is a sub-direct product of fields {%/pz}, i @ @ Z — [] Z/pz. i(n) =

p prime
(n( mod p)), = pth coordinate.

Clearly if 7, projection of [] (%/pz) onto Z/pz. Then im,= surjective.
p prime
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Proposition 5.1.9

The following conditions on a ring are equivalent:
1. R is semi-primitive.
2. R has a faithful completely reducible representation/module.

3. R is a sub-direct product of primitive rings.

Proof: 1 = 2: For any a # 0 in R let M, be an irreducible module s.t. a - M, # 0 (or equivalently pps, (a) # 0) .

Look at M = @ M,. By definition, it is a completely reducible. Let b € R and assume b - M = 0 then bM, = 0
a#0
for all a € R but b- M}, # 0 contradiction.

2=3:
Let M = @ M,, M, irreducible and anngp M = 0. Note that:

0=anngM = ﬂannRMa

(e

Since M, is irreducible. Let R, = R/anngM., (the anngM, is a two sided ideal). We can regard M, as in R,-
module by defining: (a + anngM, )z = ax for © € M,, a € R. This is well-defined as if a« + R, = o’ + R, then
a —a’' € annpM, so that (a —a')z = 0Ve € M, and ax = a'x.

M, is a faithful R,-module, so R, is a primitive ring. i : R — [[ R, natural embedding: i (a), = a+annrM, € R,.

iis 1-1 as (NanngM, = 0 and i, = p,, - @ is surjection onto Ry, pa @ iaRa — Ra.
«

3 = 1: Suppose i : R — [[ Ry embedding, R, is primitive and if p, projection of [ Ry onto R, then p,i is
« (e}
surjection.

For every o we have an irreducible faithful R,-module: M,. Suppose the representation associated with this is pq.

Let a # 0 in R:
ﬂ ker paia = ﬂ keri, =0

pais faithful, so ker po, = 0 ¢
as if b € (Nkeri, = 0 then i, (b) = 0 for all a, so p, (i (b)) = 0 for all a.
Do projection form [[Ro — Ra 50 pa (i (b)) =0 for all @ <= i(b) =0 <= b=0. pyia : R — EndM, is a

«
representation of R.

Now let a # 0 in R then as (\ker paio, = 0, we must have some « s.t. a ¢ ker paiq SO pain(a) # 0. So R is
(e}
semi-primitive. [ |

An “internal” characterization of primitive and semi-primitive:

Definition 5.1.10 Let I be a left ideal of R, (I : R) ={b€ R| bR C I}.

Lemma 5.1.11
ID(I:R)and(I:R)isa two-sided ideal.

Proof: Suppose K C I, 2-sided ideal, then for any b € K: bR C K C I sob € (I:R). So (I: R) = the largest
2-sided ideal contained in I.

Now note that (I : R) is clearly additive, and it is multiplicative, hence it is a two-sided ideal. [ ]

Claim 5.1.12
If M = R/1 (isomorphism as left R-modules) then anngM = (I : R).

Proof: If b e (I: R).
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Remarks 5.1.13 M can be regarded as an R-module by defining ax = a(r+1)=ar+Iforr+I=x€ M, r €
R, a € R, we can show it is well-defined.

SobRCI,sob(r+1I)= br +1=1. SobM =0 and b € anngM. Conversely if b € anng M then for any r € R,

el
br € I and so bM = 0. [ |

Claim 5.1.14

1. R is primitive if and only if R contains a maximal left ideal I containing no nonzero two-sided ideal.

2. R is semi-primitive if and only if R # 0 and N (I:R)=0.

Imaximal left ideal

Proof:

1. If R is primitive we have an irreducible module M and anngM = 0. By previous claim /1 & M for some
maximal left ideal in R. 0 = anngM = (I : M) and so I contains no nonzero two-sided ideal. Converse: read
from end to beginning.

2. Suppose R # 0 and N (I:R) =0. For I a maximal left idea ®/r would be an irreducible
Imaximal left ideal in R
R-module. We form the direct sum: &P Rir = M. anngM = N anng (R/1) =
Imaximal left ideal Imaximal left ideal in R

(I : R) = 0 by assumption. So, for any 0 # a € R we have some maximal left ideal T s.t.
Imaximal left ideal in R
a ¢ (I:R)andsoa¢anng(R/1)so R is semi-primitive.
Conversely, if R is semi-primitive then for any a # 0 in R we have an irreducible module M, s.t. a - M, # 0.
So we have a maximal left ideals I, s.t. B/1, = M,. Since aM, # 0 we must have that: [\ anngM, = 0.
0#a€ER

(\ anngM, = () (I,:R) =0 but note that it is trivial that: N (I:R)C N {.:R)
0#a€R 0#a€ER I'maximal left ideal 0#a€ER
hence N (I:R)=0.

Imaximal left ideal

Corollary 5.1.15

R is simple— R is primitive.

Remarks 5.1.16 Converse is not true - example later.

Corollary 5.1.17

If R is commutative:

1. R is primitive if an only if R is a field (if and only if R is simple).

2. R is semi-primitive if and only if R is a sub-direct product of fields.

%\Example 5.1.18 () Z is a sub-direct product of Z/pz, p is primitive. ¢ : Z — [[ %/pz, so Z is a semi-
pprime
primitive ring.

5.2 Jacobson Radical

Definition 5.2.1 J (R) = Jacobson radical = N ker p.

pirreducible representation
J (R) is a two-sided ideal of R (intersection of two-sided ideals).
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Definition 5.2.2 if P < R ideal in R we say it is a primitive ideal if ®/p is primitive ring.

%\Example 5.2.3 () If P is a maximal ideal then it is primitive.

Lemma 5.2.4

‘ P <R is a primitive ideal if and only if P = (I : R) where I is some maximal left ideal in R.

Proof: If P = (I : R), I a maximal left ideal in R then M = R/r is irreducible R-module. anngM = (I : R) = P.
Regard M as an B/p-module by defining for x € M, a € R:

(a+ P)x =ax
It is well-defined asif a+ P =a'+ P= (a—ad') x=0s0azx =a’z. M is a faithful ®/p module and irreducible.
——
€P=annr M

So R/y is a primitive ring.
Converse: Let P < R be a primitive ideal. So B/r is a primitive ring. So it has a faithful irreducible module M.

Regard M as an R-module by defining © € M, a € R ax = (a + P)x. anngM = P as M is a faithful ®/p-module
(as it’s an irreducible ®/p-module).

M is an irreducible R-module, so corresponds to some maximal left ideal I s.t. R/r = M. And then as before
P =anng (R/1)=(I: R). [

Claim 5.2.5

1. J(R) = N p.

Pprimitive ideal in R

2. J(R) = N I

I'maximal left ideal of R

Proof:
1. By defining:
J(R) = m ker p
pirreducible representations

= ﬂ anngp M
Mirreducible R-modules

= m annpg (B/1)

Imaxaimal left ideal

= N (I:R)

Imaxaimal left ideal

= N P

Pprimitive itdeal in R

2. Note that anngM = () anngz (anngz = left ideal). J(R) = N anngM. If M is
0#zeM Mirreducible R-modules
irreducible and = € M, z # 0 then anngxr = maximal left ideal as map ¢ sending a € R to ax has anngz =

ker ¢, ¢ is surjective and M = R/anngaz ( annga = maximal left ideal). So:

J(R) = ﬂ annpM = m ﬂ anngx

Mirreducible R-modules Mirreducible R-modules \ 0#xeM

But it’s clear that:

ﬂ anngpx | 2O ﬂ I
Mirreducible R-modules \ 0#x€M Imaximal left ideal
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(because each anngx is a maximal left ideal). On the other hand, Left ideal 7 O (I : R) so:

part 1

N ID N (I:R) = N P=JE®

Imaximal left ideal Imaximal left ideal previous lemma Pprimitive

%\Example 5.2.6 () Z. I = max (left) ideal <= I = pZ with p prime.

I= () pZ=0
Imaximal left ideal pprime
So J (Z) = 0.
10/06/2014
Theorem 5.2.7

1. R is semi-primitive if and only if J (R) = 0 (follows from the fact that R is semi-primitive <= [} aximal loft ideal (I : B)-

2. If R # 0, R/j is semi-primitive (i.e. J (£&/7) =0) and if B is an ideal s.t. £/B is semi-primitive then B D J.

Proof:

1.

2. Given any ideal B< R, R = R/B. Every ideal P < R correspond to an ideal P of Rs.t. P2 B and R/p =~ R/p.
If P is primitive ideal then we have B/p primitive <= E/P primitive <= P primitive in R.
Now, suppose that /B is semi-primitive. So

J(R/B)=0= N P=0= N P/p=0= N P/p =0
B P Pprimitive in R
Pprimitive in /5 Pprimitive in R PO R
PDOB -
So we get N P=BsoB2J= N R.
Pprimitive in R Pprimitive in R
PO B PO B

Now look at R = R/ , by previous calculation:

T o T S o R P
~ ~ ~—
Pprimitive in R Pprlmltlve in R every primitive ideal 2 J

PDJ
ﬂ Ply= N Ply=J/1=0

Pprimitive in R
Pprimitive in R

Recall: we say that R is local if the set of non-units = a 2-sided ideal.
Theorem 5.2.8
Let R # 0 be a ring. Then the following are equivalent:

1. R is local.

2. J(R) is the set of non-units.

3. 3! maximal left ideal.
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4. 3! maximal right ideal.

Remarks 5.2.9 If R is local then 3! maximal 2-sided ideal.

Proof: We will prove that 4 = 3 later on. And it is trivial that 2 = 1. We want to show that 1 = 3:
Let I =set of non-units. So [ is a maximal left ideal and clearly the only one.
3=2:

J(R) = ﬂ I = the unique maximal left ideal
Imaximal left ideals
Clearly J (R) Cset of non units.

Let x be a non-unit. Assume x ¢ J (R), Rz is a left ideal as Rx Z J (R) must have Rz = R, So x is left invertible.
So we have y € R s.t. yx = 1.

Look at Ry, if Ry = R then y is 2-sided invertible, and its right inverse, z, will also be its left inverse meaning that
x is a unit - contradiction. So Ry is a proper left ideal and so contained in J (R). Soy € J(R),sol=y-z € J(R)
- contradiction.

3 =4
Since J (R) =the intersection of all maximal left ideal, we have that J (R) = the unique maximal left ideal.

J (R) is also a right ideal, Let I’ be a maximal right ideal containing J (R) we want to show that it is the only
maximal right ideal.

Suppose I” is a maximal right ideal and I"” # I’. Let x € I"\I’ , so « ¢ J (R) (since J (R) C I').

As before if Rz = Rso Jy € Rs.t. yr =1 so z as an element in I” cannot be right invertible. So Ry is a proper
left ideal. This gives Ry C J(R) soy € J (R) and yx = 1 € J (R) a contradiction. [

5.2.1 An element characterization of J (R) = J

Definition 5.2.10 For z € R, R a ring:

1. z is left quasi-regular if 1 — z is left invertible in R. (z is right quasi-regular if 1 — z is right invertible in R
respectively).

2. z is quasi-regular if it is both left and right quasi-regular.

3. An ideal is left (right respectively) quasi-regular if all its elements are left (right respectively) quasi-regular.

%\Example 5.2.11 () If z is nilpotent that z is quasi-regular:
(1-2) (1+z+z2—|—...—|—zk) =1
If zF+1 = 0.

Theorem 5.2.12

1. J(R) is a left quasi-regular ideal and it contains every left quasi-regular ideal.
2. J(R) ={z € R| az is left quasi-regular for all a € R}.
3. Every element of J (R) is both left and right quasi-regular.

1% “right” version of (1).

2*. “right” version of (2).
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Proof:

1.

1%, 2%,

Let z € J(R), Suppose that it is not a left quasi-regular, so 1 — z is not left invertible so R (1 — z) # R. So
R(1—z) C Iy, Iy is a maximal left ideal. So 1 —z € Iy but also z € Iy as J(R) C Iy So 1 =(1—2)+z € Iy,
a contradiction.

We shall show that if Z is a left quasi-regular ideal then Z C J(R). Suppose not, So there exists some
maximal left ideal I s.t. Z ¢ I. Because I is maximal, I + Z = R, so we can write 1 = b+ z. With b € I and
z € Z, so z is left quasi-regular. So b = 1 — z is left invertible but then Rb = R but Rb C I a contradiction.
So Z C J(R).

By (1) all elements of J (R) are left quasi-regular and if z € J (R) so is az for all a € R and so az will be left
quasi-regular as well.

Now, assume az is left quasi-regular for all @ € R. So Rz is a left quasi-regular ideal, so by (1), Rz C J (R)
so z € J(R).

Let z € J(R). We need to show that 1 — z is right invertible. Since 1 — z is left invertible we have s € R s.t.
s(1—2z)=1. Let y =1— s, we have:
1=1-y)(1—-2)=1—-y—z2z4+yz=y+z=yzor (y—1)z=y

So y is a multiple of z € J (R) and so y € J (R). So y is left quasi regular so 1 — y = s is left invertible. And
so s is the 2-sided inverse of 1 — z and so z is quasi-regular.

We can now define a so-called “right” Jacobson radical.

J = ﬂ I'= ﬂ P’ ={z| zaright quasi regular for all @ € R}

I’'maximal right ideal P’"right primitive" ideal

By all previous theorems on left ideal and (3) we have that J' is also a left quasi-regular ideal (we can repeat
3 on the other direction). But J contains all the left quasi-regular ideals so we get J 2 J'. Since J' is a
right quasi-regular ideal (1*) and (2*) are true for J’, we can have (1*) for J’ i.e. J’ contains every right
quasi-regular ideal. But J is also a right quasi-regular ideal, So J C J" and J = J'.

Corollary 5.2.13

R “left semi-primitivity” is equivalent to “right semi-primitivity”.

5.2.2 Example of a primitive ring that is not simple

Let V be an infinite dimensional vector space over a division ring A. Left L. = EndaV =linear operators on V' over

A.

We shall show that L acts faithfully and irreducibly on V. The representation is identity map - so faithful.

To show irreducibility we need to show that if we have and element z € V s.t. © # 0 then Lz = V. But ify € V|
we have a linear operator mapping = to y.

We show L is not simple. Let Iy ={l € L | (V) is finite dimension}. We shall show that I; is a non-trivial ideal.
Clearly Iy # 0, L.

If p,9 € Iy then (¢ + ¢) (V) =finite dimension. Now let ¢ € Iy, l € L.

[ (¢ (V)) = image of a finite dimension subspace under I- so also finite dimension

© (1 (V)) C ¢ (V) = finite dimension.

So ¢l € Iy and lp € Iy

Remarks 5.2.14 One can show that I is a minimal ideal.

If dima V = Rq then Iy is the only 2-sided ideal in L so L/, is simple.
If dima V > Ry then we also have an ideal I1y D Iy and I; = {l € L | [ (V) has countable dimension}.
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Chapter 6

Density

6.1 Density theorem for completely reducible modules

Theorem 6.1.1 (Density theorem for completely reducible modules)

Let M be a completely reducible R-module.

Denote:

R/ = EndRM

R’ = EndgM = {p € EndM | ¢ commutes with all Rendomorphisms}
Let {z1,...,2,} € M and a” € R" then there exists a € R s.t. a"'z; = ax; for all i <i < n.

In order to prove this theorem we use 2 lemmas:

Lemma 6.1.2
‘ Let M completely reducible, If N is an R-submodule of M then N is an R"-submodule.

Proof: We know that M is completely reducible hence we have an R-submodule P s.t. P® N = M. Let e
be the projection of M onto N w.r.t the decomposition. e(M) = N. As N and P are R-submodules, e is an
R-endomorphism. That is: e € R'. Let a” € R:

a” (N) = a” (e (M))

But a” commutes with every R-endomorphism, in particular with e hence:

=e(ad" (M))Ce(M)=N

Lemma 6.1.3
Let M be a module. M = M @ ...® M. Then Endg M =set of maps (u, ..., u,) — (vi,...,v,) where:
—_———

v; = Z a; ju; a; ; € R'=EndgpM

It is easy to show that each such map is an element of EndgM (™. We want to show that every element is of this
form.

Proof: Let ¢ € EndgM ™. For any vector (u1,...,up) € M ™) denote:
£(O,,uz,0) = (ulyi,...,unyi)

41



6.2. ANOTHER DEFINITION OF DENSITY CHAPTER 6. DENSITY

i
Let a; be a map sending u; — uj;. v € M £ (0, T ..0) = a};; = jth component of £(0,...,z,...0).

We claima); € R’ . Ifa € R: a},; (ax) = jth component of £ (0, ..., az,...,0) = la(0,...,z,...0) = al(0,...,,...,0)

aa’; ;(z) the transition from fa = af is because ¢ is R-endomorphism).

n
o / / /
= (auui, am-ui, ceey anyiui)

n n
!/ . / .
ay ;Ui - - -, Ay, Ui
1

=1 1=

as required. [ |

6.1.1 Proof of the theorem

Recall that the theorem states:

Theorem 6.1.4 (Density theorem for completely reducible modules)

Let M be a completely reducible R-module.

Denote:

R/ = EndRM

R" = EndgM = {p € EndM | ¢ commutes with all Rendomorphisms}
Let {z1,...,2,} € M and a” € R" then there exists a € R s.t. a"'x; = ax; for all i <i < n.

We want to prove this theorem using the lemmas we’ve just shown. Proof: For n =1 we have z € M (completely
reducible module), a” € R”. We need a € R s.t. o’z = ax.

Look at Rz = R-submodule of M. So by lemma 6.1.2 it is an R”-submodule. So o’z € Rx so Ja € R: a"z = ax.
For arbitrary n we use the case for n = 1 w.r.t module M (and use the lemma 6.1.3).

M™ is also completely reducible. Let z1,...,2, € M, a’ € R" and define ¢ € EndM™: (z1,...,2,) —
(a"z,...,a"zy,). ¢ will be an element of Endg,q, a0 M ™. Since elements of EndgM (™ are, by lemma 6.1.3
defined by matrices of elements in EndgM = R’ and a” commutes with each a; so Ja € R s.t.

(az,...,axp) =a(x1,...,2n) = @ (T1,...,2,)

= (a"z1,...,a"z,)

6.2 Another definition of density

Definition 6.2.1 Let V be a vector space over a division ring A, S € EndaV =linear transformations on V is

called dense in EndaAV if given x1,...,2z, € V linear independent over A and yi,...,y, € V there exists ¢ € S
sit. o (x;) = ;.
Remarks 6.2.2 If V is finite dimensional, the only dense set in EndaV is itself (as taking 1, ..., z, to be a basis

o € EndaV mapping bases to any set of n elements).
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6.2.1 Density theorem for primitive rings

Theorem 6.2.3 (Density theorem for primitive rings)

R is primitive if and only if R is isomorphic to a dense ring of linear transformation in a vector space over a division
ring.

Proof: If R is primitive, we have M irreducible module and representation p : R — EndM with trivial kernel (so
M is faithful irreducible module). By Schur’s Lemma we know that EndgM is a division ring which we call A.
= p(R) is a subring of EndM but in fact is a subring of Enda M as if ¢ € A and a € R, x € M then:

aplr) = o)

weEndr M

So R < Enda M. It remains to show that R is dense in EndaM. Let z1,...,x, € M linear independent over A
and y1,...,yn € M arbitrary. 3¢ linear transformation in Enda M s.t. £ (x;) = y;, 1 <14 < n. By our last theorem
(Deunsity theorem for completely reducible modules), since M is a completely reducible module as it is irreducible,
we have a € R s.t. a(z;) = y;, <1i <n. So it is dense.

Now, assume R 2dense ring of linear transformation in a vector space M over a division ring A. Regard M as an
R-module by defining ax = p(a)x, x € M. M will be irreducible as if x € M # 0 and arbitrary y € M. As R is
dense, we have a € R s.t. ax =y, so Rz = M. M is faithful as p is given as an isomorphism. [ |
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Chapter 7

Structure theorems

7.1 Structure theorem for primitive artinian rings

Theorem 7.1.1 (Structure theorem for primitive artinian rings)

The following conditions on a nonzero ring R are equivalent:
1. R is simple and left-artinian.
2. R is primitive and left-artinian.

3. R~ EndaM, M is finite dimension vector space over a division ring A.

The 1 <= 3 is known as the Wedderburn-Artin theorem for simple artinian rings. Note that we already know
that 1 = 2 as we’ve seen simple=-primitive. Proof: We first show 2 = 3:

As in previous theorem, we have M faithful irreducible module, A = Endg M division ring and R Z=dense ring of
linear transformations of M over A.

If we show M finite dimension then R = Enda M as it is dense in Enda M.
Now, suppose M infinite dimension over A, so we have infinite linear independent set x1,...,2,,... . Let I; =

anng (z;), These are left ideals in R: I; N...,NI, = anng {z1,...,2,}. There exists a linear transformation in
Enda M sending xq,...,2, to 0 and z,11 to a nonzero element. As R is dense in Enda M we have a € R s.t.

{a:vizo 1<i:<n

atny1 £ 0
left ideals, contradiction to the artinian property.

.Soaehn...NIybuta¢ L N...NI,41. So we get a properly descending sequence of

We now want to show that 3 = 1:

Suppose R = Enda M, M finite dimensional over a division ring A. So by assignment 4 this ring is simple! It is an
artinian ring as R finite dimensional over A as well! [ ]

Remarks 7.1.2 Enda M are anti-isomorphic to M,, (A) where n = dima M. ¢ <= A, v <= B we can show
that o <— (BTAT)T only if A commutative we get BT AT (AB)T.
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Chapter 8

Hilbert’s Nullstellensatz

8.1 Definition
Let F C E be fields. R = F[Xy,...,X,].

Definition 8.1.1 Given Z = (x1,...,%,) € E™ denote f (Z) = f (x1,...,2,), f € R. Given @ C R denote:

Zer (Q)={¥e€ E"| f(Z=0VYf € Q)} = Variety determined by Q
Definition 8.1.2 A set A C E" is called algebraic if it is of the form Zer (Q) for some @ C R.
%\Example 8.1.3 () Zer ({0 =0g}) = E™.
%\Example 8.1.4 () Zer(R) =@.
%\Example 8.1.5 () If E = F, then {(z1,...,2,)} = Zer {X; —2; | 1 <i < n}).

%\Example 8.1.6 () R=Q[X,Y],. Then:
Zer ({Y = X2}) = parabola y = z?in R?

Lemma 8.1.7

‘ The collection of algebraic sets in E™ is closed under finite unions and arbitrary intersections.

Proof: If A, = Zer (Q,) then:

ﬂAa = Zer (U Qa)

Zer (Q1)UZer (Qa) =Zer ({f-g| f€ Q1,9 €Q2}).

Definition 8.1.8 Zariski Topology on E™: Closed sets = algebraic sets.

Theorem 8.1.9

If F CF C E. If A algebraic set over F in F'* then there exists a unique algebraic set B in E™ s.t. BNF" = A.

Remarks 8.1.10 B doesn’t have to be equal to A. For example, consider the zero polynomial.

We shall prove this theorem later, first we will see some corollaries.
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Corollary 8.1.11

If S C E™ be a nonempty algebraic set over F'. F' C E, E algebraic closed. Then S contains a point all of whose
coordinates are algebraic over F.

Proof: (of the corollary)

Suppose SN F'=0.

Then S and @ are 2 distinct sets over F' in E™ with equal intersections. Contradiction to the uniqueness in thm,
taking A = @. [ ]

Definition 8.1.12 Let A C E™. Pol(A)={f e R| f (&) =02 € A} (or I (4))

Lemma 8.1.13

If A is algebraic then:
Zer (Pol (A4)) = A.

Remarks 8.1.14 Zer (Pol(A)) D A always, even if A is not algebraic.

Proof: If T € A, f (Z) =0 for all f € Pol(A) so & € Zer (Pol (4)).
Now show the converse.
As A algebraic, there exists Q@ C R s.t. A = Zer(Q). If f € Q then f (&) =0 for all Z € A. So f € Pol(A), so
Q C Pol(A).
Clearly, for any B,C C R:

B C C — Zer (B) 2 Zer (C)
Applying it to @ C Pol (A) we get that:

A = ZerQ D Zer (Pol (A))

which completes the proof. [ |
Remarks 8.1.15 Pol(A) is always an ideal.
So the lemma implies that every algebraic set is of the form Zer (1) for some ideal I in R.

Corollary 8.1.16

Every algebraic set is of the form Zer (Q) where Q is a finite set of polynomials.

Proof: By the Hilbert’s basis theorem (which we won’t prove in class, but it can be found in Isaacs: Graduate
Algebra page 434).

If R is noetherian then so is R [z].

And inductively we get that F [X7, ..., X,] is noetherian, F is a field.

So we have that our ring R = F [z1,...,2y] is noetherian.
So if A is an algebraic set and A = Zer (I). I <R then [ is finitely generated by a finite set @ in R and A = Zer (Q).
|

8.2 The Nullstellensatz

Theorem 8.2.1 (Nullstsllensatz)

Let R O F, E is algebraic closed.
Let I ben an ideal in R = F [X,,...,X,] then Pol (Zer (I)) = V1.

VI=Nilrad(I)={feR| IneN f" eI}
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Remarks 8.2.2 /T C Pol (Zer (I)) as if f € R and f" € I then for & € Zer (I), f™ () = (f (Z))" = 0.
So as & € E™ we must have f (Z) =0 so f € Pol (Zer (1)).

First we show the weak Nullstellensatz:
Theorem 8.2.3 (The weak Nullstellensatz)

If I is a proper ideal of R = F [X1,...,Xy,], F C FE and E is algebraic closed then: Zer (I) # &.

Proof: Direct proof: T ;1 R (proper). There exists by Zorn a maximal ideal M of R containing I.

So R/M = R is a field. Clearly M NF = {0} (as M contains no units). So we have an embedding of F in R: F C R.
Let a; = X, + M. R=F[Xi,...,X,]. So R = Flay,...,an

So as R is a field we get that the «; are algebraic over F. F' C RCE.

We claim (a1, ...,a,) € R* C E™ is in fact an element of Zer (I) as if f € I

f(al,...,an)Zf(Xl—I—M,...,Xn-i-M)Zf(Xl,...,Xn):6

as fel C M. [ |
We shall now prove the Nullstellensatz: Proof: Remains to show:

Pol (Zer (I)) € VT
Le[t f € Pol(Zer ](I)) Need to show In € N: f™ € I. Let T be a new indeterminate. Look at the ring S = R[T] =
F[Xy,...,Xn,T).

Detnote by I[T] = {g € S| coefls of glie in I'}. This is clearly an ideal in S. Look at the ideal: J = I[T] +
(1-T-£)S. We claim: J =S.

Suppose not, then J is a proper ideal and we can use the weak Nullstellensatz with respect to S. So applying the
weak Nullstellensatz to S = F[Xq,...,X,,T] we have that Zer (J) # @. So we have (a1,...,a,,3) € E"™! in
Zer (J).

I CJsod=(a,...,an) € Zerl f € Pol(Zer(I)) so also f (&) = 0 but then as 1 = Tf € J we get 1 € J
contradiction.

So we have:
S=IT+(1-Tf)S

In particular, we have u € I'[T], v € S = R[T].

l=u+(1-Tf)v

The above can be regarded as an identity over field of fraction of R: R*.
% € R* substitute in 1 = u+ (1 — Tf) v in place of T

EREIEG
Sou(%):l.

Denote: v (T) =a,T"+ ...+ a1T + ag, a; € 1.

1 1
l=a,—+...4+a1=+ag
Im f

fn:an+an—1f+"-+a1fnil+a0fn

el

So frelorfeI [
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8.3 Leftovers

We now want to prove 8.1.9:
Theorem 8.3.1

F C F C E, E algebraic closed. We had A C " algebraic set.
We want to show there exists a unique B C E™ s.t. BN F' = A.

Proof: Let Zerg, Zerp be the zero set function in F and F' respectively. Define B = Zerg (Pol (4)).
BNF" = Zery (Pol (4)) = A.
It remains to show uniqueness. Suppose C' C F™, C' N F' = A. Again using lemma:

C = Zerg(Pol(C))
A = CNFE" =Zery(Pol(C))

Now, use the Nullstellensatz in F:
Pol (Zers (1)) = VI

Taking I = Pol (C) we then get:
VT = Pol (Zer (Pol (C))) = Pol (A)

Again in FE by the Nullstellensatz:
I =Pol (C) = Pol (Zerp (I)) = VI

So:
Pol(A) = Pol (C)
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