Graduate Algebra

Or Dagmi - http://digmi.org

March 24, 2015

Lecture notes of the class of 2014. Dr. Josephine Shamash (josie.shamash@gmail.com)

Contents

1 Introduction 5
2 Modules 7
2.1 Definition 7
2.2 Homomorphisms of R-modules 8
2.3 Representations of rings 9
2.4 Submodules 10
2.4.1 Quotient modules 10
2.5 Isomorphism Theorems 10
2.6 Artinian \& Noetherian modules 11
2.7 Free modules 13
2.8 Universal property 14
3 Tensor product 17
3.1 Balanced product 17
3.1.1 Some claims 17
3.2 Tensor Product Definition 18
3.3 Construction of a tensor product explicitly 18
3.4 Examples 19
4 Group theory theorems with R-modules analogues 21
4.1 Normal Series 21
4.1.1 Schreier Refinement theorem 22
4.2 Jordan Holder Theorem 23
4.3 Krull-Schmidt Theorem 24
4.4 Indecomposable 25
4.5 Fitting's Lemma 27
4.6 Completely Reducible Modules 29
4.6.1 Schur's Lemma 29
5 Structure theory of rings 33
5.1 Structure theory 33
5.2 Jacobson Radical 35
5.2.1 An element characterization of $J(R)=J$ 38
5.2.2 Example of a primitive ring that is not simple 396 Density41
6.1 Density theorem for completely reducible modules 41
6.1.1 Proof of the theorem 42
6.2 Another definition of density 42
6.2.1 Density theorem for primitive rings 43
7 Structure theorems 45
7.1 Structure theorem for primitive artinian rings 45
8 Hilbert's Nullstellensatz 47
8.1 Definition 47
8.2 The Nullstellensatz 48
8.3 Leftovers 50

Chapter 1

Introduction

In this course we will mainly talk about non-commutative rings.
The assignments will be 25% of the final grade while the take home exam will be 75%. Books:

1. Jakobson: Basic Alg II
2. Algebra: A gram algebra course: I.M Isaac.
3. S.Lang - Algebra.

Chapter 2

Modules

2.1 Definition

A module is an additive abelian group.
Definition 2.1.1 If R is a ring (we will always talk about rings with identity), M is a module over R or a left R-module if M is an additive abelian group and we have a map: $\begin{aligned} & R \times M \rightarrow M \\ & (a, x) \mapsto a \cdot x\end{aligned}$ while $a \in R$ and $x \in M$ that satisfies the following:

1. $a(x+y)=a x+a y \quad \forall a \in R, \forall x, y \in M$
2. $(a+b) x=a x+b x \quad \forall a, b \in R, \forall x \in M$
3. $(a \cdot b) x=a(b \cdot x) \quad \forall a, b \in R, \forall x \in M$
4. $1_{R} \cdot x=x \quad \forall x \in M$

This definition seems very similar to a vector space, only instead of a field we have a ring, and that will be our first example:

Example 2.1.2 () $M=V_{F}=$ Vector space over a field $F . R=F$.
The operation of F on V is multiplication by scalars.
Just as we have left R-module we can have also a right R-module:
Definition 2.1.3 If R is a ring (always we are talking about a rings with identity), M is a right R-module if M is an additive abelian group and we have a map: $\begin{aligned} & M \times R \rightarrow M \\ & (x, a) \mapsto x \cdot a\end{aligned}$ while $a \in R$ and $x \in M$ that satisfying the following:

1. $(x+y) a=x a+y a \quad \forall a \in R, \forall x, y \in M$
2. $x(a+b)=x a+x b \quad \forall a, b \in R, \forall x \in M$
3. $x(a \cdot b)=(x \cdot a) b \quad \forall a, b \in R, \forall x \in M$
4. $x \cdot 1_{R}=x \quad \forall x \in M$

One, at first glance, would expect the definitions to be the same, but that will not be true for non-commutative rings. For example the 3rd condition will have different results!

Example 2.1.4 () $M=V_{F}=$ vector space over a field $F, R=$ the ring of linear operators on V. If $\varphi \in R$ then $\varphi(x+y)=\varphi(x)+\varphi(y)$, we can write this as a multiplication: $\varphi \cdot(x+y)=\varphi \cdot x+\varphi \cdot y$. So M is a left module over R.

Example 2.1.5 () If M is any additive abelian group, we can regard it as a \mathbb{Z}-module by defining: For $n \in \mathbb{Z}$ while $n>0$ we define: $n \cdot x=\underbrace{x+\ldots+x}_{n \text { times }}$ and then we can define $(-n) \cdot x=-(n x)$ and $0 \cdot x=0$.

2.2 Homomorphisms of R-modules

Definition 2.2.1 (left R-module homomorphism) If M and N are both left R-modules, $\varphi: M \rightarrow N$ is a left R-module homomorphism if:

1. $\forall x, y \in M \quad \varphi(x+y)=\varphi(x)+\varphi(y)$ (φ is a module homomorphism).
2. $\forall x \in M, a \in R \quad \varphi(a x)=a \varphi(x)$.

Example 2.2.2 () If V, W are vector spaces over F, then V, W are an F-modules, and φ is an F-module homomorphism if and only if φ is a linear transformation.

Another way to look at the second condition is to say that the operations a and φ commute.
Example 2.2.3 () If R is a ring then we can take $M=R^{+}=\langle R,+, 0\rangle$ (the additive group of R). Then, let R act on itself through left multiplication then R is a left R-module over itself denoted by ${ }_{R} R$.
And also:
If R is a ring then we can take $M=R^{+}=\langle R,+, 0\rangle$ (the additive group of R). Then, let R act on itself through right multiplication then R is a right R-module over itself denoted by R_{R}.
This is called the regular R-module.

Special case: Division ring. A special case is when R is a division ring (A ring which every non-zero element has an inverse). Modules over division rings are more or less like vector spaces. All theorems on vector spaces that don't depend on commutativity and special field properties will hold. e.g. every module over a division ring has a basis (uses the axiom of choice). Also, we can define the notion of dimension.
The additive condition of homomorphism (the first) can be define for any group, not even a module. This will be a group homomorphism.

Definition 2.2.4 If M is a module, we define $\operatorname{End} M=\{\varphi: M \rightarrow M \mid \varphi(x+y)=\varphi(x)+\varphi(y) \quad \forall x, y \in M\}$.
It's easy to show that: $\operatorname{End} M$ is an additive group, and in fact is a ring with respect to composition and the identity map is the identity element of $\operatorname{End} M$.

Example 2.2.5 () M is an $\operatorname{End} M$-module where $\varphi \cdot x$ is defined as $\varphi(x)$.
We have $\varphi(x+y)=\varphi(x)+\varphi(y)$ so: $\varphi(x+y)=\varphi x+\varphi y$. We have: $(\varphi+\psi)=\varphi x+\psi x$ (the addition in $\operatorname{End} M)$. $(\varphi \psi)(x)=\varphi(\psi x)$ and for last: $\operatorname{Id}(x)=x$.

In some sense this is a general example as if M is a left R-module, each $a \in R$ defines an endomorphism of R as:

$$
a(x+y)=a x+a y
$$

Get a map $f: R \rightarrow \operatorname{End} M, a \in R, f(a)=$ endomorphism that a induces on M. i.e. $f(a)(x)=a x$.
In fact f will be a ring homomorphism so $f(R)$ is a subring of $\operatorname{End} M$.

Theorem 2.2.6

If R is a ring, then R is isomorphic to some ring of the form $\operatorname{End} M$ for some module(=additive group) M.
Proof: Take M to be $R^{+}=\langle R,+, 0\rangle$. Define $L: R \rightarrow \operatorname{End} M$ to be left multiplication, i.e. $L(a)=a_{L}$ where $a_{L}(x)=a x$ with $a, x \in R$.
Clearly L is additive and multiplicative as e.g: $L(a b)=(a b)_{L}$ and

$$
(a b)_{L}(x)=(a b) \cdot x \underbrace{=}_{\text {associativity in } R} a \cdot(b x)=a_{L}\left(b_{L}(x)\right)
$$

$L\left(1_{R}\right)=\operatorname{Id}$ in $\operatorname{End} M$ so $(a b)_{L}=a_{L} \cdot b_{L}($ composition in $\operatorname{End} M)$.
L is a $1-1$ as if $a_{L}=b_{L}$ then: $a \cdot 1=a_{L}(1)=b_{L}(1)=b \cdot 1$ so $a=b . \quad R \cong L(R) \subseteq \operatorname{End} M$. Meaning that $R \hookrightarrow \operatorname{End} M$.

Also, we call this image: R_{L}.
Remarks 2.2.7 If S is a ring and we have operation form S to $\operatorname{End} M\left(M=S^{+}\right)$defined by right multiplication: $a \in S, a \mapsto a_{R}$ where $a_{R}(x)=x \cdot a$.
Then: $a_{R}(x+y)=(x+y) \cdot a=x a+y a=a_{R}(x)+a_{R}(y)$ and $(a+b)_{R} x=x(a+b)=x a+x b=a_{R}(x)+b_{R}(x)$.
This gives an antihomomorphism of rings from $S \rightarrow \operatorname{End} M$ as: $(a b)_{R}(x)=x(a b)=b_{R} a_{R}(x)$ so: $(a b)_{R}=b_{R} a_{R}$
Meaning that antihomomorphism reverse the operation.

Definition 2.2.8 (Centralizer) In a ring S we define the centralizer of a subset $A \subseteq S$:

$$
\operatorname{Cent}_{S}(A)=\{r \in S \mid r a=a r \forall a \in A\}
$$

Theorem 2.2.9

(Assignment 1)
$S_{L}=\operatorname{Cent}_{E n d M}\left(S_{R}\right)$ and $S_{R}=\operatorname{Cent}_{E n d M}\left(S_{L}\right)$.

Remarks 2.2.10 $S_{L}=\left\{a_{L} \mid a \in S\right\}$ while $S_{R}=\left\{a_{R} \mid a \in S\right\}$ (multiplication form the left and multiplication from the right).

Definition 2.2.11 For a set $A, \operatorname{Sym} A=$ the group of all permutations on the element of A.

2.3 Representations of rings

Definition 2.3.1 Given a module M and a ring R, a ring homomorphism $\eta: R \rightarrow \operatorname{End} M$ is called a representation of R.

Given a left R-module M we saw already that the map $a \stackrel{\eta}{\mapsto} a_{L}$ is a ring homomorphism from R to End M.
So any R-module gives rise to a representation η defined in this way.
Conversely, given any additive abelian group M and a representation $\eta: R \rightarrow \operatorname{End} M$ we can regard M as a left R-module via the representation η by defining for $a \in R, x \in M$:

$$
a \cdot x=\eta(a)(x)
$$

Meaning R-module \Longleftrightarrow Representation of R.
In particular: ${ }_{R} R=$ "The regular module" which is R regarded as a left module over itself by left multiplication defines a representation we call the regular representation of $R: \rho, a \stackrel{\rho}{\mapsto} a_{L}$ for $a \in R$.

We defined a homomorphism of R-modules $\varphi: M \rightarrow N$, so now, we can do this inside M. In particular we can have an endomorphism $\varphi: M \rightarrow M$ of R-module M satisfying:

$$
\left\{\begin{array}{l}
\varphi(x+y)=\varphi(x)+\varphi(y) \\
\varphi(a x)=a \varphi(x)
\end{array}\right.
$$

We call this set $\operatorname{End}_{R} M$ and clearly: $\operatorname{End}_{R} M \subseteq \operatorname{End} M$.
In fact $\operatorname{End}_{R} M$ is a subring of $\operatorname{End} M$.
Example 2.3.2 () V is a vector space over F i.e. an F-module $\operatorname{End}_{F} V=$ the ring of linear operators on V.

2.4 Submodules

Definition 2.4.1 An R-submodule $N \subseteq M$ is an additive subgroup of N s.t. $R \cdot N \subseteq N$.
Example 2.4.2 () Let V be a vector space over a field F. And let $T \in \operatorname{End}_{F} V$ (linear operator on the vector space).
We can view V as an $F[x]$-module as follows:
$f(x) \in \mathbb{F}[x], v \in V$:
So if $f(x)=\sum a_{i} x^{i}$ then:

$$
f(x) \cdot v=f(T)(v)=a_{0} v+a_{1} T v+a_{2} T^{2} v+\ldots+a_{n} T^{n} v
$$

What are the submodule of V ?
W is a subspace which is T-invariant $\Longleftrightarrow W$ is a $F[x]$-submodule.
More concretely: If we take $V=\mathbb{Q}^{(3)}$ and take $T \cdot v=\underbrace{\left(\begin{array}{ccc}1 & 3 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 7\end{array}\right)}_{A} v$. For instance it is easy to see that the
eigenspaces corresponding to A are T-invariant.
Take the char polynomial:

$$
\left|\begin{array}{ccc}
\lambda-1 & -3 & 0 \\
-2 & \lambda+1 & 0 \\
0 & 0 & \lambda-7
\end{array}\right|=(\lambda-7)\left[\left(\lambda^{2}-1\right)-6\right]=(\lambda-7)\left(\lambda^{2}-7\right)
$$

We have three eigenspaces, one corresponding to the eigenvalue 7 and two corresponding to $\pm \sqrt{7}$. And so, the submodules of V as an $\underbrace{\mathbb{Q}[\pi]}$-module where π (the number) acts on v via the matrix A.

Remarks 2.4.3 If R is a ring, regarded as a left R-module. The Left ideals are the R-submodules.

2.4.1 Quotient modules

Definition 2.4.4 If N is a R-submodule of an R-module M, then we define $M / N=q u o t i e n t ~ o f ~ b y ~ a s ~ a d d i t i v e ~$ groups to be an R-module by defining for $x \in M, a \in R$:

$$
a(N+x)=N+a \cdot x
$$

Remarks 2.4.5 This is well-defined as if $N+x=N+x^{\prime}$ then $x-x^{\prime} \in N$. So $a\left(x-x^{\prime}\right) \in N$ So: $N+a x=N+a x^{\prime}$.

2.5 Isomorphism Theorems

We will start with 2 isomorphism theorems for R-modules.

Theorem 2.5.1

Let M be an R-module.

1. Let N_{1} and N_{2} be R-submodules of M. Then:

$$
y_{1}+N_{2} \stackrel{\varphi}{\mapsto} y_{1}+N_{1} \cap N_{2}, y_{1} \in N_{1}
$$

Defines an isomorphism of: $N_{1}+N_{2} / N_{2}$ onto $N_{1} / N_{1} \cap N_{2}$.
2. If $P \subseteq N \subseteq M R$-submodules. Then N / P are R-submodules of M / P and $(x+P)+N / P \mapsto x+N$ for $x \in M$ is an isomorphism: $(M / P) /(N / P)$ onto M / N.

Remarks 2.5.2 The usual basic homomorphism theorem holds, i.e. if M, N are R-modules and $\varphi: M \rightarrow N$ an R-homomorphism then $\operatorname{ker} \varphi$ is an R-submodule and if φ is surjective then: $M / \operatorname{ker} \varphi \cong N$.

Proof: The proofs are straight-forward, We will only show that 1 is well-defined.
Suppose $y_{1}, y_{1}^{\prime} \in N_{1}$ if:

$$
y_{1}+N_{2}=y_{1}^{\prime}+N_{2}
$$

Then $y_{1}-y_{1}^{\prime} \in N_{2}$ but it is also an element of N_{1} so $y_{1}-y_{1}^{\prime} \in N_{1} \cap N_{2}$ and so: $y_{1}+N_{1} \cap N_{2}=y_{1}^{\prime}+N_{1} \cap N_{2}$.

Remarks 2.5.3 Any additive group A can be regarded as a \mathbb{Z}-module. In that case the \mathbb{Z}-submodule are simply the subgroups of A.

2.6 Artinian \& Noetherian modules

Definition 2.6.1 A module M is called Noetherian if it satisfies the "ascending chain condition" i.e. if every ascending chain of submodules stabilizes. i.e. if:

$$
M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \ldots
$$

inside M then:

$$
\exists k: \quad M_{k}=M_{k+1}=M_{k+2}=\ldots
$$

Definition 2.6.2 A module M is called Artinian if it satisfies the "descending chain condition" i.e. if every descending chain of submodules stabilizes. i.e. if:

$$
M_{1} \supseteq M_{2} \supseteq M_{3} \supseteq \ldots
$$

inside M then:

$$
\exists k: \quad M_{k}=M_{k+1}=M_{k+2}=\ldots
$$

Definition 2.6.3 A ring R is left-Noetherian if every ascending chain of left ideals stabilizes.
Definition 2.6.4 A ring R is left-Artinian if every ascending chain of left ideals stabilizes.
And of course we can talk about right-Noetherian and right-Artinian. The interesting part is that all these combination can happen, a ring can be left-Noetherian without being right-Noetherian.

Example 2.6.5 () \mathbb{Z} is Noetherian but not Artinian.
Note that:

$$
\mathbb{Z} \supset 2 \mathbb{Z} \supset 4 \mathbb{Z} \supset 8 \mathbb{Z} \supset \ldots
$$

Is an infinite descending chain.
On the other hand if we have increasing chain then:

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots \subseteq \mathbb{Z}
$$

Then $I=\bigcup_{j=1}^{\infty} I_{j}$ is an ideal in \mathbb{Z} and so $I=n \mathbb{Z}$ for some $n \in \mathbb{Z}$ and so $\exists k$ where $n \in I_{k}$ so $I_{k}=I_{k+1}=\ldots=I$.
More generally we can say:
Claim 2.6.6
If R is a PID, then R is Noetherian.
Proof: The same proof as for \mathbb{Z}.

Example 2.6.7 () Let p be a fixed prime, Take a look at the following ring:

$$
P=\left\{\left.\frac{m}{p^{k}} \right\rvert\, m \in \mathbb{Z}, k \in \mathbb{Z}\right\}
$$

This is a subring of \mathbb{Q} (regarded as a \mathbb{Z}-module) which is neither noetherian nor artinian! $\mathbb{Z} \subseteq P$, so:

$$
\mathbb{Z} \supseteq 2 \mathbb{Z} \supseteq 4 \mathbb{Z} \supseteq \ldots
$$

This is an infinite descending chain of \mathbb{Z}-submodules in P.
But also, we can look at:

$$
\mathbb{Z} \subseteq \frac{1}{p} \mathbb{Z} \subseteq \frac{1}{p^{2}} \mathbb{Z} \subseteq \ldots
$$

Is an infinite ascending chain.
Remarks 2.6.8 Any finite module will be both noetherian and artinian.
Remarks 2.6.9 A finite dimensional vector spaces over a field F is both noetherian and artinian as an F-module.
Remarks 2.6.10 A vector space of infinite dimensional over field F is neither noetherian nor artinian.
Theorem 2.6.11
If N is a submodule of a module M. Then if M is noetherian(/artinian) then so are N and M / N and any homomorphic image of M.

We will prove for noetherian, for artinian the proof is the same. Proof: Clearly any chain of submodules of N is also a chain for M-so property holds.
Now, suppose we have a chain of submodules of M / N :

$$
\overline{P_{1}} \subseteq \overline{P_{2}} \subseteq \overline{P_{3}} \subseteq \ldots \subseteq M / N
$$

By homomorphism theorems there are submodules $N \subseteq P_{i} \subseteq M$ s.t. $\overline{P_{i}} \subseteq P_{i} / N$. Moreover:

$$
P_{1} \subseteq P_{2} \subseteq P_{3} \subseteq \ldots
$$

So this chain stabilizes, so also $\overline{P_{i}}$.

Theorem 2.6.12 (The converse)

If M is a module, and N is a submodule s.t. N and M / N both noetherian(/artinian) then so is M.
We will prove for noetherian, for artinian the proof is the same.
Proof: Suppose $P_{1} \subseteq P_{2} \subseteq P_{3} \subseteq \ldots$ an increasing chain of submodules in M then: $N \cap P_{1} \subseteq N \cap P_{2} \subseteq \ldots$ is an increasing chain of submodules in N. and so it stabilizes so we have k such that:

$$
N \cap P_{k}=N \cap P_{k+1}=\ldots
$$

Now, we also know that: $\left(N+P_{1}\right) / N \subseteq\left(N+P_{2}\right) / N \subseteq \ldots$ is increasing chain of submodules in M / N and so stabilizes, so we have l such that:

$$
\left(N+P_{l}\right) / N=\left(N+P_{l+1}\right) / N=\ldots
$$

Let $r=\max \{k, l\}$. From the isomorphism theorem:

$$
\begin{aligned}
\left(N+P_{r}\right) / N & \cong P_{r} / N \cap P_{r}=P_{r} / N \cap P_{r+1} \\
\| & \\
\left(N+P_{r+1}\right) / N & \cong P_{r+1} / N \cap P_{r+1}
\end{aligned}
$$

Hence:

$$
P_{r} / N \cap P_{r+1} \cong P_{r+1} / N \cap P_{r+1} \Rightarrow P_{r}=P_{r+1}
$$

As required.

Theorem 2.6.13

If M and N are both noetherian(/artinian) then so is $M+N$.

Proof: We have:

$$
M+N / N \cong M / N \cap M
$$

quotient of M and so noetherian. N and $M+N / N$ are noetherian, and that implies that $M+N$ noetherian from the previous theorem.

Definition 2.6.14 (Finitely generated) M is a finitely generated R-module if $\exists x_{1}, \ldots, x_{n} \in M$ such that:

$$
M=R x_{1}+R x_{2}+\ldots+R x_{n}
$$

Theorem 2.6.15

If R is left-noetherian then so is every finitely generated left R-module.

Proof: Let $M=R x_{1}+\ldots+R x_{n}$ then each $R x_{i}$ is homomorphic image of R as a left R-module: $a \in R, a \mapsto a x_{i}$. So M is a finite sum of noetherian modules, and thus noetherian.

Exercise: If R is noetherian and M is an R-module then M is noetherian \Longleftrightarrow every submodule of M is finitely generated.

2.7 Free modules

Definition 2.7.1 Let M be an R-module, the set $\left\{e_{\alpha}\right\}_{\alpha \in I}$ is a set of generators for M if every element of M can be written in the form:

$$
x=\sum_{i=1}^{k} a_{i} e_{\alpha_{i}} \quad \text { for some } a_{i} \in \operatorname{Rand} \alpha_{i}, \ldots, \alpha_{k} \in I
$$

Definition 2.7.2 (Basis) If $\left\{e_{\alpha}\right\}_{\alpha \in I}$ is a set of generators for an R-module M we say it is a basis for M if $\sum a_{i} e_{\alpha_{i}}=0$ for $a_{i} \in R, \alpha_{1}, \ldots, \alpha_{k} \in I$ if and only if $a_{i}=0$ for all i.

Remarks 2.7.3 We say that a set with this property (without being a generator) is "independent".

Definition 2.7.4 ((Lang)) M is a free R-module if it has a basis.
Example 2.7.5 () $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z}$ is a non-free \mathbb{Z}-module.

Example 2.7.6 () $\prod_{p \text { prime }} \mathbb{Z} / p \mathbb{Z}$ as a \mathbb{Z}-module is not free.
Recall the definition from last week:
Definition 2.7.7 M is a free R-module if it is a R-module and has a basis (over R), and then $\operatorname{rank} M=$ cardinality of basis (not well-defined).

And recall that a basis is a set $\left\{e_{\alpha}\right\}$, and every element in M can be represented as $\sum a_{i} e_{\alpha_{i}}$ for $a_{i} \in \mathbb{R}$, and $\sum a_{i} e_{\alpha_{i}}=0 \Longleftrightarrow \forall i \quad a_{i}=0$.

Example 2.7.8 () \mathbb{Z} is a free \mathbb{Z}-module as $\{1\}$ is a basis.
On the other hand, $\mathbb{Z} / 3 \mathbb{Z}$ as a \mathbb{Z}-module is not free. And so $(\mathbb{Z} / 3 \mathbb{Z}) \times$ any other module as a \mathbb{Z}-module is not free.
Denote $R^{(n)}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in R\right\}$, then $R^{(n)}$ is a free R-module, with basis: $e_{i}=(0, \ldots, 1, \ldots, 0)$.

Claim 2.7.9

If M is a free R-module of rank n then $M \cong R^{(n)}$.
Proof: If $\left\{x_{1}, \ldots, x_{n}\right\}$ basis for M, map $x_{i} \mapsto e_{i}$ and extend to an isomorphism of R-modules.

Claim 2.7.10

Let M be any R-module. $u_{1}, \ldots, u_{n} \in M$ then there exists a unique homomorphism from $R^{(n)}$ to M sending $e_{i} \stackrel{\mu}{\mapsto} u_{i}$.

This claim is equivalent to the definition we gave, this is the "universal property". We say that F is a free if and only if the above claim holds (where we replace F with $R^{(n)}$ and exists a set of elements).

Proof: Define $\mu\left(\sum a_{i} e_{i}\right)=\sum a_{i} u_{i}$. This define an homomorphism, and it is unique from the independence.

Theorem 2.7.11

If R is commutative and $R^{(m)} \cong R^{(n)}$ then $m=n$.
Proof: Suppose wlog $m<n$ and take $\left\langle e_{1}, \ldots, e_{n}\right\rangle$ and $\left\langle f_{1}, \ldots, f_{m}\right\rangle$ two bases inside $R^{(n)}$ say.
$\exists b_{i, j} \in R$ and $\exists a_{j, i} \in R$ s.t. $f_{j}=\sum_{i=1}^{n} a_{j, i} e_{i}$ and $e_{i}=\sum_{j=1}^{m} b_{i, j} f_{j}$. Construct two matrices $n \times n$:

$$
\begin{aligned}
A & =\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
a_{2,1} & \ldots & a_{2, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1} & \ldots & a_{m, n} \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right) \\
B & =\left(\begin{array}{cccccc}
b_{1,1} & \ldots & b_{1, m} & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
b_{n, 1} & \ldots & b_{n, m} & 0 & \ldots & 0
\end{array}\right)
\end{aligned}
$$

We get:

$$
\begin{aligned}
f_{j} & =\sum_{i=1}^{n} a_{j, i}\left(\sum_{k=1}^{m} b_{i, k} f_{k}\right) \Rightarrow \sum_{i=1}^{n} a_{j, i} b_{i, k}=\delta_{j, k} \\
e_{i} & =\sum_{j=1}^{m} b_{i, j}\left(\sum_{l=1}^{m} a_{j, l} e_{l}\right) \Rightarrow \sum_{j=1}^{m} b_{i, j} a_{j, l}=\delta_{i, l}
\end{aligned}
$$

By the second equation we get that $B A=I$. It is easy to show that over a commutative ring this means that A, B commute and that B is also a right inverse for A.
But $A \cdot B$ has $n-m$ rows of zeroes. So we get a contradiction.

Remarks 2.7.12 If R is non-commutative you can have $R^{(m)} \cong R^{(n)}$ and $m \neq n$. If $A^{\prime}=\left(a_{i, j}\right)_{m \times n}$ and $B=\left(b_{i, j}\right)_{n \times m}$ as in the previous construction. Get $B^{\prime} A^{\prime}=I_{n \times n}$ and $A^{\prime} B^{\prime}=I_{m \times m}$ (ex. in Jacobson BAI page 169).

2.8 Universal property

Theorem 2.8.1

Corollary 2.8.2

Any two free R modules with bases of equal cardinality are isomorphic.
Proof: If $\left\{x_{\alpha}\right\}_{\alpha \in I}$ is a basis for $F,\left\{x_{\alpha}^{\prime}\right\}$ a basis for F^{\prime} then the map sending $x_{\alpha} \mapsto x_{\alpha}$ will be invertible and so an isomorphism.

Chapter 3

Tensor product

3.1 Balanced product

Definition 3.1.1 (Balanced product) For a ring R, let $M=M_{R}$ be a right R-module and $N={ }_{R} N$ be a left R-module.
A balanced product of M and N is an additive abelian group P and map $f: M \times N \rightarrow P$ such that $\forall x, x^{\prime} \in$ $M \forall y, y^{\prime} \in N:$

1. $f\left(x+x^{\prime}, y\right)=f(x, y)+f\left(x^{\prime}, y\right)$.
2. $f\left(x, y+y^{\prime}\right)=f(x, y)+f\left(x, y^{\prime}\right)$.
3. $f(x r, y)=f(x, r y) \forall r \in R$.

We denote this by (P, f).

Example 3.1.2 () $M=N=\mathbb{Z}=P$. And the map: $f(x, y)=x \cdot y$.

Example 3.1.3 () Let R be a ring, $R^{(n)}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in R\right\}$ as a left R-module (w.r.t coordinate-wise multiplication on the left).
${ }^{(m)} R=\left\{\left.\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{m}\end{array}\right) \right\rvert\, a_{i} \in R\right\}$ is a right R-module.
Let $P=M_{m \times n}(R)$ as an additive group. And we define the map as:

$$
f\left(\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right),\left(b_{1}, \ldots, b_{n}\right)\right) \underbrace{=}_{\text {Matrix prod. }}\left(\begin{array}{cccc}
a_{1} b_{1} & a_{1} b_{2} & \ldots & a_{1} b_{n} \\
\vdots & & & \\
a_{m} b_{1} & \ldots & \ldots & a_{m} b_{n}
\end{array}\right)
$$

(P, f) is a balanced product.

3.1.1 Some claims

Claim 3.1.4

$f(0, y)=0=f(x, 0)$.

Claim 3.1.5

$f(-x, y)=-f(x, y)=f(x,-y)$.

3.2 Tensor Product Definition

Definition 3.2.1 (Tensor product) A tensor product of M_{R} (right R-module) and ${ }_{R} N$ (left R-module) is a balanced product. $\left(M \otimes_{R} N, \otimes\right)$ (We denote $P=M \otimes_{R} N$ and $f=\otimes$) such that for any other balanced product (P, f) of M and N there exists a unique homomorphism $\varphi: M \otimes_{R} N \rightarrow P$ s.t.

$$
\forall x \in M, \forall y \in N: \quad \varphi(x \otimes y)=f(x, y)
$$

Remarks 3.2.2 We are using the notation: $\otimes(x, y)=x \otimes y$.
i.e. tensor product is a balanced product with a "universal property":

Remarks 3.2.3 From uniqueness it follows that every element in $M \otimes_{R} N$ will be a finite sum of "pure tensors" i.e. of the form:

$$
\sum_{i=1}^{n} x_{i} \otimes y_{i}
$$

3.3 Construction of a tensor product explicitly

Let F be a free additive group on set of generators $M \times N$ (i.e. a set of formal finite sums $\sum_{i=1}^{n}\left(x_{i}, y_{i}\right)$ where $x_{i} \in M$ and $y_{i} \in N$).
Look at the subgroup G in F generated by the following set of elements $\forall x \in M, y \in N, r \in R$:
(1) $\left(x+x^{\prime}, y\right)-(x, y)-\left(x^{\prime}, y\right)$
(2) $\left(x, y+y^{\prime}\right)-(x, y)-\left(x, y^{\prime}\right)$
(3) $(x r, y)-(x, r y)$

Define $M \otimes_{R} N=F / G, x \otimes y=(x, y)+G$.
Clearly, $\left(M \otimes_{R} N, \otimes\right)$ is a balanced product by definition of G. Now we show it satisfies the universal property: Let (P, f) be a balanced product of M and N. As F is a free group, there is a unique homomorphism of groups $\psi: F \rightarrow P$ s.t. $\psi(x, y)=f(x, y)$ where $x \in M$ and $y \in N$.
Let $\operatorname{ker} \psi=K$. For $(x, y),\left(x^{\prime}, y\right) \in M \times N$ we have:

$$
\psi\left(x+x^{\prime}, y\right)-\psi(x, y)-\psi\left(x^{\prime}, y\right)=f\left(x+x^{\prime}, y\right)-f(x, y)-f\left(x^{\prime}, y\right) \underbrace{=}_{f \text { is a balanced product }} 0
$$

So:

$$
\psi\left[\left(x+x^{\prime}, y\right)-(x, y)-\left(x^{\prime}, y\right)\right]=0
$$

Meaning all the elements of type (1) are in $\operatorname{ker} \psi$. Similarly all the elements of type (2) and (3) are in ker ψ. So ker ψ contains all the generators of G and so $G \subseteq \operatorname{ker} \psi$. So ψ induces a homomorphism φ from $M \otimes_{R} N=F / G$ to P.

$$
\varphi(x \otimes y)=\varphi((x, y)+G)=\psi(x, y)=f(x, y)
$$

Since $G \subseteq \operatorname{ker} \psi$ this is a well-defined homomorphism. And can show it is unique.

3.4 Examples

Example 3.4.1 () ${ }^{(m)} R \otimes_{R} R^{(n)} \cong M_{m, n}(R)$.
Example 3.4.2 () If V and W are vector spaces over a field F with bases $\left\{v_{\alpha}\right\},\left\{w_{\beta}\right\}$ respectively then $V \otimes_{F} W$ is the vector space with basis $\left\{\begin{array}{ll}v_{\alpha} \otimes w_{\beta} \mid & \begin{array}{c}v_{\alpha} \in \text { basis for } V \\ w_{\beta} \in \text { basis for } W\end{array}\end{array}\right\}$ In particular, if $\operatorname{dim} V, \operatorname{dim} W<\infty$ then:

$$
\operatorname{dim} V \otimes_{F} W=\operatorname{dim} V \cdot \operatorname{dim} W
$$

Example 3.4.3 () If M is an additive group, we can regard M as a \mathbb{Z}-module.
We can construct a tensor product: $\mathrm{Q} \otimes_{\mathbb{Z}} M$. This is an additive group and we can regard it as a \mathbb{Q}-module i.e. for $r, s \in \mathbb{Q} s(r \otimes x) \underbrace{=}_{\text {def }} s r \otimes x, \mathbb{Q} \otimes_{\mathbb{Z}} M$ is a vector space over \mathbb{Q}.
$M \hookrightarrow \mathbb{Q} \otimes_{\mathbb{Z}} M, x \stackrel{\text { def. }}{\mapsto} 1 \otimes x$.
In general, if $R \subseteq S$ subring, and M is an R-module, extend M to an S-module by: $S \otimes_{R} M=M^{\prime}$ and define $s_{1}\left(s_{2} \otimes x\right)=s_{1} s_{2} \otimes x$.

Chapter 4

Group theory theorems with R-modules analogues

4.1 Normal Series

Definition 4.1.1 (Normal series) A normal series for a group G is a chain:

$$
\begin{gathered}
1=G_{s+1} \triangleleft G_{s} \triangleleft \ldots \triangleleft G_{1}=G \\
G_{i+1} \triangleleft G_{i} \quad \forall i
\end{gathered}
$$

Definition 4.1.2 Two series are equivalent if can permute indices to give isomorphic quotients. i.e. Given also $1=H_{t+1} \triangleleft H_{t} \triangleleft \ldots \triangleleft H_{1}=G$. Then the 2 series equivalent if $t=s$ and we have correspondence $i \mapsto i^{\prime}$ s.t. $G_{i} / G_{i+1} \cong H_{i^{\prime}} / H_{i^{\prime}+1}$.

Example 4.1.3 () For example:

$$
\begin{array}{lcc}
1 & \triangleleft & C_{3} \triangleleft C_{3} \times C_{5} \triangleleft C_{3} \times C_{5} \times C_{7} \\
1 & \triangleleft & C_{5} \triangleleft C_{5} \times C_{7} \triangleleft C_{3} \times C_{5} \times C_{7}
\end{array}
$$

Look at the quotients:

$$
\begin{array}{llll}
1 & \triangleleft & C_{3} \triangleleft C_{3} \times C_{5} \triangleleft C_{3} \times C_{5} \times C_{7} & C_{3}, C_{5}, C_{7} \\
1 & \triangleleft C_{5} \triangleleft C_{5} \times C_{7} \triangleleft C_{3} \times C_{5} \times C_{7} & C_{5}, C_{7}, C_{3}
\end{array}
$$

It's clear these two are not the same series, but they are equivalent by our definition.

Definition 4.1.4 (Refinement) A series $\left\{G_{i}\right\}$ is refinement of a series $\left\{H_{i}\right\}$ if $\left\{G_{i}\right\} \supseteq\left\{H_{i}\right\}$ (i.e. $\left\{H_{i}\right\}$ are subsequences of $\left.\left\{G_{i}\right\}\right)$.

Definition 4.1.5 (Composition series) A composition series is normal series which has no nontrivial refinements.

Example 4.1.6 () Both of the series:

$$
\begin{array}{lcc}
1 & \triangleleft & C_{3} \triangleleft C_{3} \times C_{5} \triangleleft C_{3} \times C_{5} \times C_{7} \\
1 & \triangleleft & C_{5} \triangleleft C_{5} \times C_{7} \triangleleft C_{3} \times C_{5} \times C_{7}
\end{array}
$$

Are composition series, but equivalent.
In modules we can define:

Definition 4.1.7 A series of an R-module M is a chain of R-modules s.t.

$$
1=M_{s+1} \triangleleft M_{s} \triangleleft \ldots \triangleleft M_{1}=M
$$

4.1.1 Schreier Refinement theorem

Theorem 4.1.8 (Schreier Refinement theorem)

Any two normal series for a finite group have equivalent refinements. Any two series of R-submodules have equivalent refinements.

Remarks 4.1.9 If $N \triangleleft G$ and $H \leq G$ a subgroup, then $N \cdot H=H \cdot N$ is a subgroup as well.
Lemma 4.1.10 (Zassenhaus' Lemma (Butterfly Lemma))
Let G_{1}, G_{2} be subgroups of a group G, And let $H_{i} \triangleleft G_{i}$ for $i=1,2$. Then:

$$
\begin{array}{lcc}
H_{1}\left(G_{1} \cap H_{2}\right) & \triangleleft & H_{1}\left(G_{1} \cap G_{2}\right) \\
\left(H_{1} \cap G_{2}\right) H_{2} & \triangleleft & \left(G_{1} \cap G_{2}\right) H_{2}
\end{array}
$$

And we have:

$$
H_{1}\left(G_{1} \cap G_{2}\right) / H_{1}\left(G_{1} \cap H_{2}\right) \cong\left(G_{1} \cap G_{2}\right) H_{2} /\left(H_{1} \cap G_{2}\right) H_{2}
$$

Proof: Note that every coset of $H_{1}\left(G_{1} \cap H_{2}\right)$ in $H_{1}\left(G_{1} \cap G_{2}\right)$ can be represented by an element of $G_{1} \cap G_{2}$, as if $x y \in H_{1}\left(G_{1} \cap G_{2}\right)$ with $x \in H_{1}$ and $y \in G_{1} \cap G_{2}$ then:

$$
x y H_{1}\left(G_{1} \cap H_{2}\right) \underbrace{=}_{\text {normality }} x H_{1} y\left(G_{1} \cap H_{2}\right)=H_{1} y\left(G_{1} \cap H_{2}\right) \underbrace{=}_{\text {normality }} y H_{1}\left(G_{1} \cap H_{2}\right)
$$

Similarly, any coset $\left(H_{1} \cap G_{2}\right) H_{2}$ in $\left(G_{1} \cap G_{2}\right) H_{2}$ can be represented by an element in $G_{1} \cap G_{2}$ so for $y \in G_{1} \cap G_{2}$. Map: $y \cdot H_{1}\left(G_{1} \cap G_{2}\right) \mapsto y\left(H_{1} \cap G_{2}\right) H_{2}$ and verify this is an isomorphism.

Proof of Schreier Refinement Theorem:

Proof: Given two normal series of finite length:

$$
\begin{aligned}
& 1=G_{s+1} \triangleleft G_{s} \triangleleft \ldots \triangleleft G_{1}=G \\
& 1=H_{t+1} \triangleleft H_{t} \triangleleft \ldots \triangleleft H_{1}=G
\end{aligned}
$$

We show these series have equivalent refinements.
Denote $G_{i_{k}}=G_{i+1}\left(G_{i} \cap H_{k}\right)$ and $H_{k_{i}}=\left(H_{k} \cap G_{i}\right) H_{k+1}$ where $1 \leq k \leq t+1$ and $1 \leq i \leq s+1$. By Zassenhaus we have that: $G_{i_{k+1}} \triangleleft G_{i_{k}}$ and $H_{k_{i+1}} \triangleleft G_{k_{i}}$ and: $G_{i_{k}} / G_{i_{k+1}} \cong H_{k_{i}} / H_{k_{i+1}}$.

$$
\begin{aligned}
G_{i_{1}} & =G_{i+1}(G_{i} \cap \overbrace{H_{1}}^{G})=G_{i+1} G_{i}=G_{i} \\
H_{k_{1}} & =H_{k} \\
G_{i_{t+1}} & =G_{i+1}(G_{i} \cap \overbrace{H_{t+1}}^{1})=G_{i+1}
\end{aligned}
$$

We now get two normal series of length $s \cdot t$:

$$
\begin{aligned}
G & =\underbrace{G_{1}}_{G_{1}} \triangleright G_{1_{2}} \triangleright \ldots \triangleright G_{1_{t+1}}=\underbrace{G_{2}}_{G_{2_{1}}} \triangleright G_{2_{2}} \triangleright \ldots \triangleright G_{s_{t+1}}=1 \\
H & =\underbrace{H_{1}}_{H_{1_{1}}} \triangleright \ldots
\end{aligned}
$$

These will be equivalent because of the isomorphisms of $G_{i_{k} / G_{i_{k+1}}} \cong H_{k_{i}} / H_{k_{i+1}}$ with $\left(i_{k}\right)^{\prime}=k_{i}$.

Example 4.1.11 ()

$$
\begin{array}{lll}
1 & \triangleleft & \mathbb{Z} / 3 \mathbb{Z} \triangleleft \mathbb{Z} / 6 \mathbb{Z} \\
1 & \triangleleft & \mathbb{Z} / 2 \mathbb{Z} \triangleleft \mathbb{Z} / 6 \mathbb{Z}
\end{array}
$$

Example 4.1.12 () \mathbb{Z} has no composition series as a \mathbb{Z}-module.

$$
\begin{array}{lll}
\text { quotient of order } 3 \mathbb{Z} & \supset & 3 \mathbb{Z} \supset 9 \mathbb{Z} \supset \ldots \\
\text { quotient of order } 5 \mathbb{Z} & \supset & 5 \mathbb{Z} \supset 25 \mathbb{Z} \supset \ldots
\end{array}
$$

Two infinite series which do not have equivalent refinements. Each quotient is of prime order.
Example 4.1.13 () $1 \triangleleft\langle(12)(34)\rangle \triangleleft V_{4} \triangleleft A_{4} \triangleleft S_{4}$. Composition series (V_{4} is Klein 4 group).

4.2 Jordan Holder Theorem

An immediate consequence of the Schreier Refinement Theorem is the Jordan Holder theorem:

Theorem 4.2.1

Any two composition series for a group/ R-module are equivalent.
Proof: User Schreier refinement theorem (and throw out trivial quotients).

Definition 4.2.2 (Irreducible module) An R-module $M(\operatorname{group} G)$ is irreducible (simple) if it has no nontrivial submodules (normal subgroups).

Remarks 4.2.3 In a composition series, all quotients will be irreducible.

Theorem 4.2.4

A module $M \neq 0$ has a composition series \Longleftrightarrow it is both noetherian and artinian.

Proof: Suppose M ha a composition series:

$$
M=M_{1} \supset M_{2} \supset \ldots \supset M_{s+1}=0
$$

And suppose an arbitrary series of submodules:

$$
M=N_{1} \supset N_{2} \supset \ldots \supset N_{t} \supset \ldots
$$

Look at the sequence that ends with a 0 :

$$
M=N_{1} \supset N_{2} \supset \ldots \supset N_{t} \supset 0
$$

Then, this has a refinement equivalent to our composition series. So $t \leq s$.
Similarly, every increasing sequence has length $\leq s$. Thus M is both artinian and noetherian.
Now we want to show the other direction. Assume M is noetherian and artinian. $M=M_{1}$ has a proper maximal submodule M_{2} (otherwise we have an infinite increasing chain). M_{2} is also noetherian so has a maximal submodule M_{3}. Get descending chain:

$$
M=M_{1} \supset M_{2} \supset M_{3} \supset \ldots
$$

Which must be of finite length as M also artinian. So we got a composition series.

4.3 Krull-Schmidt Theorem

Definition 4.3.1 (Indecomposable module) M is indecomposable if it has no nontrivial submodules M_{1}, M_{2} s.t. $M=M_{1} \oplus M_{2}$.

Remarks 4.3.2 Clearly irreducible \rightarrow indecomposable. But not the other way around.
Example 4.3.3 () \mathbb{Z} is not irreducible as a \mathbb{Z}-module. But note that it cannot be that $\mathbb{Z}=\underbrace{M_{1}}_{n \mathbb{Z}} \oplus \underbrace{M_{2}}_{m \mathbb{Z}}$ because $n \mathbb{Z} \cap m \mathbb{Z} \neq 0$ (unless n or $m=0$).

Note:

Given R-modules M_{1}, \ldots, M_{r} we can construct $M_{1} \times \ldots \times M_{k}=M$ with coordinate-wise operations Get R-homomorphisms: $i_{j}: M_{j} \rightarrow M$ the natural injections and $p_{j}: M \rightarrow M_{j}$ the natural projections. $e_{j}=i_{j} p_{j}: M \rightarrow M . e_{j} \in \operatorname{End} M:$

$$
e_{j}^{2}=i_{j} \underbrace{\left(p_{j} i_{j}\right)}_{1_{M_{j}}} p_{j}=e_{j}
$$

So e_{j} is idempotent.
If $j \neq k$ then:

$$
e_{j} e_{k}=i_{j} \underbrace{\left(p_{j} i_{k}\right)}_{0} p_{k}=0
$$

So e_{1}, \ldots, e_{k} are orthogonal idempotents. And: $e_{1}+\ldots+e_{k}=1_{M}$. Denote $e_{j}(M)=M_{j}^{\prime} \cong M_{j}$. If $x \in M$ then:

$$
x=1_{M} x=\underbrace{e_{1} x}_{\in M_{1}^{\prime}}+\ldots+\underbrace{e_{k} x}_{\in M_{k}^{\prime}}
$$

So M is a direct sum of submodules $M_{1}^{\prime}, \ldots, M_{k}^{\prime} . M=M_{1}^{\prime} \oplus \ldots \oplus M_{k}^{\prime}$ as we have:

$$
M_{k}^{\prime} \cap\left(\bigoplus_{j \neq k} M_{j}^{\prime}\right)=0
$$

Conversely, given $M=M_{1} \oplus \ldots \oplus M_{k}$ where M_{i} are submodules. Can define injection and projections:

$$
\begin{array}{rll}
i_{j}: M_{i} & \rightarrow & M \\
p_{j}: M & \rightarrow & M_{i}
\end{array}
$$

s.t. $e_{j} \in \operatorname{End} M$ idempotents, orthogonal and $e_{1}+\ldots+e_{k}=1_{M}$.

Conclude: $\quad M \neq 0$ is indecomposable $\Longleftrightarrow \operatorname{End} M$ does not contain a non-trivial idempotent (i.e. $\neq 0,1)$
Proof: Clearly showed that if $M=$ nontrivial direct sum, then End M has nontrivial idempotents. $M=M_{1} \oplus M_{2}$. $e_{1}+e_{2}=1_{M}$ and $e_{1}\left(M_{1}\right)=M_{2}$ and $e_{2}\left(M_{2}\right)=M_{2}$.
Now, assume $e \in \operatorname{End} M$, nontrivial idempotent. Define $e(M)=M_{1},(1-e) M=M_{2}$ and get $M_{1} \oplus M_{2}=M$.

$$
e_{1} e_{2}=e(1-e)=e-e^{2}=0
$$

$M_{2}, M_{1} \neq 0$ as if $M_{1}=0$ then $e=0$ contradiction.
And if $M_{2}=0$ then $1_{M}-e=0$ giving $e=1_{M}$ contradiction.

Remarks 4.3.4 End $\mathbb{Z} \cong \mathbb{Z}$ contains no nontrivial idempotents.

4.4 Indecomposable

Remarks 4.4.1 Decomposition to direct sum of finite number of indecomposable is generally not unique. e.g.

$$
\mathbb{R}^{3}=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\} \oplus \operatorname{span}\left\{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\} \oplus \operatorname{span}\left\{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

but also:

$$
\mathbb{R}^{3}=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\} \oplus \operatorname{span}\left\{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\} \oplus \operatorname{span}\left\{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

But here we do have isomorphisms between components.
We shall need a string condition on End M we get uniquness up to isomorphisms of decompositions.
Recall that:
Definition 4.4.2 A ring R is local if the set of non-units is an ideal.

Example 4.4.3 () $M_{2}(\mathbb{Q})$ is not local as: $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ but:

$$
S=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{Z}, n \neq 0,2 \nmid n\right\}
$$

is local. $2 S=$ set of non-units and is an ideal.
Remarks 4.4.4 Local rings do not contain idempotents $\neq 0,1$.

Definition 4.4.5 (Strongly indecomposable) M is strongly indecomposable if End M is local.

Theorem 4.4.6

 indecomposable, then $k-l$ and there exists a permutation $j \leadsto j^{\prime}$ s.t. $M_{j} \simeq N_{j}$.

Example 4.4.7 () \mathbb{Z} is indecomposable but not strongly indecomposable as End $\mathbb{Z} \cong \mathbb{Z}$ not local.

Lemma 4.4.8

$\overline{\text { Suppose } M, N}$ modules, $f: M \rightarrow N$ homomorphism. $M \neq 0, N$ is indecomposable, $g: N \rightarrow M$ homomorphism s.t. $g f$ automorphism (of M), then f and g are isomorphisms.

Proof: Suppose k inverse of $g f$ so $k g f=1_{M}$.
Let $l=k g: N \rightarrow M, l f=1_{M}$ so f is left invertible.
Look at $f l=e, e^{2}=f l f l=f(l f) l=f l=e$, so e is idempotent. As N is indecomposable, it must have $e=0$ or $e=1$. Now $l f=1_{M}$ so we cant have $e=0$ because then: $1_{M}=(l f)^{2}=l f l f=l \underbrace{(f l)}_{\neq 0} f$. So $e \neq 0$ so $e=1$ and f is also right invertible (l is its right inverse) and so an isomorphism. Now $g=k^{-1} f^{-1}$ so g also an isomorphism.

Now we want to prove the theorem: Proof: By induction on k.
$k=1$ then $M=M_{1}$ indecomposable so $l=1$ and $N_{1} \cong M_{1}$.
Now assume for any $m<k$ and prove for k.
Define projections: $e_{j}: M \rightarrow M_{j}$ for $1 \leq j \leq k$ and $f_{j}: M \rightarrow N_{j}$ for $1 \leq j \leq l$.
Look at: $h_{j}=f_{j} e_{1}: M \rightarrow N_{j}$ and $k_{j}=e_{1} f_{j}: M \rightarrow M_{1}$, then

$$
\sum_{j=1}^{l} k_{j} h_{j}=\sum e_{1} f_{j} f_{j} e_{1}=e_{1}(\sum \underbrace{f_{j}^{2}}_{f_{j}}) e_{1}=e_{1} 1_{M} e_{1}=e_{1}
$$

Restricting e_{1} to $M_{1}:\left.e_{1}\right|_{M_{1}}=e_{1}^{\prime},\left.k_{j}\right|_{N_{1}}=k_{j}^{\prime},\left.h_{j}\right|_{M_{1}}=h_{j}^{\prime}$.
So $\sum k_{j}^{\prime} h_{j}^{\prime}=e_{1}^{\prime}$ and $e_{1}^{\prime}=1_{M_{1}}$ and M_{1} is strongly indecomposable. End M_{1} is local, so we cannot have everyone of the $k_{j}^{\prime} h_{j}^{\prime}$ non-units. So $\exists j$ s.t. $k_{j}^{\prime} h_{j}^{\prime}$ is automorphism of M_{1}.
Now, use the lemma, WLOG suppose $j=1, h_{1}^{\prime}, k_{1}^{\prime}$ must be isomorphisms. $h_{1}^{\prime}: M_{1} \rightarrow N_{1}$ so $M_{1} \cong N_{1}$.
Remarks 4.4.9 Note: we are not done yet, as we can have $M_{1} \cong N_{1}$ but $M / M_{1} \not \approx M / N_{1}$. e.g. M is infinite dimensional vector space with basis $\left\{x_{i}\right\}_{i=1}^{\infty}$ and $\underbrace{\operatorname{span}\left\{x_{2}, x_{3}, \ldots\right\}} \cong \underbrace{\operatorname{span}\left\{x_{3}, x_{4}, \ldots\right\}}$.

Claim 4.4.10
$\overline{M=N_{1} \oplus M_{2}} \oplus \ldots \oplus M_{k}$.

First show $N_{1} \cap\left(M_{2} \oplus \ldots \oplus M_{k}\right)=0$, Let $x \in N_{1} \cap\left(M_{2} \oplus \ldots \oplus M_{k}\right), e_{1}(x)=0$ as $x \in M_{2} \oplus \ldots \oplus M_{k} . f_{1}(x)=x$ as $x \in N_{1} . k_{1}(x)=e_{1} f_{1}(x)=0$, but k_{1}^{\prime} is an isomorphism from N_{1} to M_{1}, so this implies $x=0$.
It remains to show that $M_{1} \subseteq N_{1} \oplus M_{2} \oplus \ldots \oplus M_{k}=M^{\prime}$. Let $x \in M_{1}$, note that $e_{1}\left(N_{1}\right)=e_{1} f_{1}\left(N_{1}\right)=k_{1}\left(N_{1}\right)=$ $k^{\prime}\left(N_{1}\right)=M_{1}$, so there exists $y \in N_{1}$ s.t. $x=e_{1}(y)$ hence:

$$
\sum_{i=1}^{k} e_{i}(y)=y
$$

So we get:

$$
x=e_{1}(y)=y-\sum_{i=2}^{k} e_{i}(y) \in M^{\prime}
$$

So now we do have:

$$
N_{2} \oplus \ldots \oplus N_{l} \cong M / N_{1} \cong M_{2} \oplus \ldots \oplus M_{k}
$$

And get our result by induction.

4.5 Fitting's Lemma

Lemma 4.5.1 (Fitting's Lemma)

Let M be both artinian and noetherian, and $f \in \operatorname{End}_{R} M$. Then $M=f^{\infty}(M) \oplus f^{-\infty}(0)$ where

$$
\begin{aligned}
& f^{\infty}(M)=\cap_{n=0}^{\infty} f^{n}(M) \\
& f^{-\infty}(0)=\bigcup_{n=1}^{\infty} \operatorname{ker} f^{n}
\end{aligned}
$$

And $\left.f\right|_{f^{\infty}(M)}$ is an automorphism and $\left.f\right|_{f^{-\infty}(0)}$ is nilpotent.

Proof:

$$
\begin{aligned}
M & \supseteq f(M) \supseteq f^{2}(M) \supseteq \ldots \\
0 & \subseteq \operatorname{ker} f \subseteq \operatorname{ker} f^{2} \subseteq \ldots
\end{aligned}
$$

Since M is artinian and noetherian, both chains stabilize. So $\exists r$ s.t. $f^{r}(M)=f^{r+1}(M)=\ldots=f^{\infty}(M)$, $\operatorname{ker} f^{r}(M)=\operatorname{ker} f^{r+1}(M)=\ldots=f^{-\infty}(0)$.
Suppose $z \in \operatorname{ker} f^{r}(M) \cap f^{r}(M)$. Then, $\exists y \in M$ s.t. $z=f^{r}(y)$ and $f^{r}(z)=0$ giving $f^{2 r}(y)=0$ so $y \in \operatorname{ker} f^{2 r}=$ ker f^{r} hence $z=f^{r}(y)=0$.
Now, take $x \in M$, we show that $x \in f^{\infty}(M) \oplus f^{-\infty}(0)$.

$$
f^{r}(x) \in f^{r}(M)=f^{2 r}(M)
$$

so $\exists y \in M: f^{r}(x)=f^{2 r}(y)$. So $f^{r}\left(x-f^{r}(y)\right)=0$. So $x-f^{r}(y) \in \operatorname{ker} f^{r}$.

$$
x \in \underbrace{\operatorname{ker} f^{r}}_{f^{-\infty}(0)} \oplus \underbrace{f^{r}(M)}_{f^{\infty}(M)}
$$

We now show $\left.f\right|_{f^{-\infty}(0)}$ is nilpotent.
For all $x \in f^{-\infty}(0)=\operatorname{ker} f^{r}, f^{r}(x)=0$ so $\left(\left.f\right|_{f^{-\infty}(0)}\right)^{r}=0$.
We show $\left.f\right|_{f \infty(M)}$ is an automorphism:

$$
f^{\infty}(M)=f^{r}(M)=f^{r+1}(M)
$$

So $\left.f\right|_{f \infty(M)}$ is surjective.
Suppose $x \in f^{\infty}(M)$ and $f(x)=0$ so $x \in \operatorname{ker} f \subseteq f^{-\infty}(0)$ so $x=0$. So $\left.f\right|_{f \infty) M}$ is injective and surjective.

Example 4.5.2 () Counterexample:

Let V be an infinite dimensional vector space over a field, $\left\{x_{i}\right\}_{i=1}^{\infty}$ basis. So V neither artinian nor noetherian. f is a linear operator that project onto span $\left\{x_{1}\right\}$. i.e. if $x=\sum_{i=1}^{k} c_{i} x_{i}$ then $f(x)=c_{1} x_{1}$.
g is the linear operator $g(x)=\sum_{i=1}^{k} c_{i} x_{i+1}$.
Let $T=f+g$. What is its kernel?
If $T(x)=0$ then $f(x)+g(x)=0$. If x as above $T(x)=c_{1} x_{1}+\sum_{i=1}^{k} c_{i} x_{i+1}=c_{1}\left(x_{1}+x_{2}\right)+c_{2} x_{3}+\ldots+c_{k} x_{k+1}$ implies $c_{i}=0$ for all i so $x=0$ and $\operatorname{ker} T=0 \rightarrow T^{-\infty}(0)=0$.
But note that:

$$
\begin{aligned}
T(V) & =\operatorname{span}\left\{x_{1}+x_{2}, x_{3}, x_{4}, \ldots\right\} \\
T^{2}(x) & =T\left(c_{1}\left(x_{1}+x_{2}\right)+c_{2} x_{3}+\ldots\right)=c_{1} x_{1}+c_{1} x_{2}+c_{1} x_{3}+c_{2} c_{4}+\ldots \\
T^{2}(V) & =\operatorname{span}\left\{x_{1}+x_{2}+x_{3}, x_{4}, x_{5}, \ldots\right\} \\
\bigcap_{n=1}^{\infty} T^{n}(V) & =0
\end{aligned}
$$

Remarks 4.5.3 Applying Fitting's lemma to a finite dimensional vector space and operator T we get some r s.t. $V=T^{r}(V) \oplus \operatorname{ker} T^{r}$ (both of them are T invariant subspaces).
In particular, if $T=A-\lambda I$ where A is a matrix and λ an eigenvalue, then $\operatorname{ker} T^{r}$ is the generalized eigenspace for λ.
We can decompose the $T^{r}(V)$ subspace w.r.t. $A-\mu I$ where μ is another eigenvalue.
Continue decompose V to generalized eigenspaces of A and get the Jordan decomposition of the matrix A.

Corollary 4.5.4

Let M be indecomposable, artinian and noetherian. Then every endomorphism of M is either nilpotent or an isomorphism - in fact M is strongly indecomposable.

Proof: Let $f \in \operatorname{End} M$.
By Fitting's lemma $M=f^{\infty}(M) \oplus f^{-\infty}(0)$, but M is indecomposable, so one of these submodules is 0 and $M=f^{\infty}(M)$ and f is automorphism or $M=f^{-\infty}(0)$ and f is nilpotent.
It remains to show that $\operatorname{End} M$ is local.
The set of non-units $=$ set of all nilpotent endomorphisms.
Remarks 4.5.5 If f is nilpotent, $f \neq 0$, then $\exists r \geq 2 f^{r}=0$ and $f^{r-1} \neq 0$ so f cannot be invertible.

Remarks 4.5.6 In a commutative ring we have f, g nilpotent, taking k large enough $(f+g)^{k}=0$ as we get linear combinations $f^{k-l} g^{l}$.

Corollary 4.5.7

Let M be an indecomposable module that is both artinian and noetherian. Then every endomorphism of M is either an automorphism or nilpotent and in fact $\operatorname{End} M$ is local, i.e. M is strongly indecomposable.

Proof: We showed that every endomorphism is nilpotent or an automorphism. It remains to show that the set of nonunits in $\operatorname{End} M$ is an ideal. $I=\{f \in \operatorname{End} M \mid f$ is nilpotent $\}$.
Let $f \in I, g \in \operatorname{End} M$ then $g \circ f$ and $f \circ g$ are not invertible. As if $f \neq 0, f^{k}=0$ and $f^{k-1} \neq 0$ then $(g f) f^{k-1}=0$, $f^{k-1}(f g)=0$.
So if say $g f$ is invertible and h is inverse, we would have $\underbrace{h(g f)}_{1} f^{k-1}=f^{k-1}=0$ contradiction.
Suppose that $f_{1}, f_{2} \in I, f_{1}+f_{2} \notin I$ so $f_{1}+f_{2}$ automorphism. So we have $g \in \operatorname{End} M$ such that $g\left(f_{1}+f_{2}\right)=$ $\left(f_{1}+f_{2}\right) g=1$.
Let $h_{i}=f_{i} g$. so $h_{i} \in I$ and so it is nilpotent, thus exists k s.t. $h_{i}^{k}=0$. we then have $\underbrace{\left(1-h_{i}\right)}_{\text {invertible }}\left(1+h_{i}+h_{i}^{2}+\ldots+h_{i}^{k-1}\right)=$

1. But $h_{1}+h_{2}=1$ so h_{2} is invertible. Contradiction.

Theorem 4.5.8

$\overline{\text { If } M \neq 0 \text { is both }}$ artinian and noetherian then M contains indecomposable submodules M_{i} s.t. $M=M_{1} \oplus \ldots \oplus M_{n}$.
Proof: As M is artinian and noetherian, it has a composition series. By Jordan-Holder, any two composition series are equivalent and so the length is well-defined.
We prove the theorem by induction on the length $\ell(M)$ of a composition series.
If $\ell(M)=1$ then M is irreducible and so indecomposable.
Now assume $\ell(M)>1$. if M is indecomposable we are done.
So now assume M not indecomposable. So $M=N_{1} \oplus N_{2}$. $N_{1}, N_{2} \neq 0$. We claim $\ell\left(N_{i}\right)<\ell(M)$ as if we form the chain $0 \subset N_{i} \subset M$ which can be refined to a composition series giving $\ell\left(N_{i}\right)<\ell(M)$.
So now, using induction hypothesis on N_{1}, N_{2} we get that M is direct sum of indecomposable.
We got:

Theorem 4.5.9 (Krull-Schmidt Theorem)

Let $M \neq 0$ be both artinian and noetherian and suppose $N_{1} \oplus N_{2} \oplus \ldots \oplus N_{l}=M=M_{1} \oplus \ldots \oplus M_{k}$ then $k=l$ and we have permutation $i \rightarrow i^{\prime}$ s.t. $M_{i} \cong N_{i^{\prime}}$.

Wedderburn - 1909 proved for finite groups with a gap, and Remak in 1911 filled the gap.
Krull in 1925 proved for abelian groups with operators, modules over rings, and Schmidt in 1928 proved for arbitrary groups.

4.6 Completely Reducible Modules

Theorem 4.6.1

The following are equivalent:

1. M is an irreducible right R-module.
2. $M \neq 0$ and M is generated by any $x \neq 0$ as a right R-module.
3. $M \cong R / I$ with I max right ideal in R.

Proof: $1 \Rightarrow 2$: clearly if $x \neq 0, x R=$ right R-submodule. $S o$ if $x \neq 0$ must have $x R=M$.
$2 \Rightarrow 3$: Take $x \in M, x \neq 0$ and the map $a \stackrel{\varphi}{\mapsto} x a$ module homomorphism $R \rightarrow M . \operatorname{Im} \varphi=M$ as $x R=M$, $I=\operatorname{ker} \varphi=$ right ideal and it is maximal. As otherwise would have $b \in R, I^{\prime}:=b R+I \subsetneq R$. But then I^{\prime} / I would correspond to a submodule N in $M, N:=\varphi\left(I^{\prime}\right), N \cong I^{\prime} / I$ so would have $y \in N$ in submodule but $y R=M$ by condition 2.
$3 \Rightarrow 1$: If I is maximal, clearly R / I must be irreducible as if it had a submodule $N \neq 0, M$ would have corresponding right ideal $I^{\prime}: 0 \subset I \subset I^{\prime} \subset R$ and $I^{\prime} / I \cong N$.

4.6.1 Schur's Lemma

Theorem 4.6.2 (Schur's Lemma)
Let M, N be irreducible module. $f \in \operatorname{Hom}_{R}(M, N)$, then either $f \equiv 0$ or f isomorphism. In particular: if $M \cong N$, $\underbrace{\operatorname{End}_{R}(M)}_{\cong \operatorname{Hom}_{R}(M, N)}=$ division ring and if $M \cong N$, $\operatorname{Hom}_{R}(M, N)=0$.

Proof: Take $f \neq 0$ in $\operatorname{Hom}(M, N)$. ker f is a submodule of M, $\operatorname{ker} f \neq M$ as $f \neq 0, M$ is irreducible so get $\operatorname{ker} f=\{0\}$. $\operatorname{Im} f$ is a submodule of $N, f \neq 0$ so $\operatorname{Im} f \neq 0 . N$ is irreducible so we get $\operatorname{Im} f=N$ so f is an isomorphism as required.

Example 4.6.3 () V is a finite dimensional vector space over a field $F . R=\operatorname{End}_{F}(V) \cong M_{n}(F)$.
$\operatorname{End}_{R}(V)=$ set of all linear operators that commute with every other linear operator $=$ center of $M_{n}(F)(=$ set of scalar matrices $\cong F)$.
V is an irreducible R-module as given any $0 \neq v \in V$ and $w \in V$ then exists $\varphi \in \operatorname{End}_{F}(V)$ s.t. $\varphi(v)=w$ so $R v=V$. So by Schur's Lemma, $\operatorname{End}_{R}(V)=$ a division ring $=$ center of $M_{n}(F)$ so commutative, so it is a field.

Definition 4.6.4 Suppose $\left\{M_{\alpha}\right\}_{\alpha \in A}$ is a set of submodules of a module M. Denote by $\sum_{\alpha \in A} M_{\alpha}=$ set of all elements of the form $x_{\alpha_{1}}+\ldots+x_{\alpha_{k}}$. $\alpha_{i} \in A, x_{\alpha_{i}} \in M_{\alpha_{i}}$, i.e. finite sums of elements in the M_{α}, so $\sum_{\alpha \in A}^{\alpha \in A} M_{\alpha}$ will be submodule of M.

Definition 4.6.5 S is independent set of submodules if $M_{\alpha} \cap\left(\sum_{\substack{\beta \in A \\ \beta \neq \alpha}} M_{\beta}\right)=0$ for all $\alpha \in A$.

Example 4.6.6 () $\left\{x_{\alpha}\right\}_{\alpha \in A}$ is independent set of elements iff $\left\{R x_{\alpha}\right\}_{\alpha \in A}$ are an independent set of submodules.

Claim 4.6.7

$\overline{\text { If } S=\left\{M_{\alpha}\right\}_{\alpha \in A}}$ is dependent, then there exists a finite subset of S which is dependent.
Proof: We have α s.t. $M_{\alpha} \cap\left(\sum_{\beta \neq \alpha} M_{\beta}\right) \neq 0$, so $\exists x_{\alpha} \in M_{\alpha}$ and $x_{\beta_{i}} \in M_{\beta_{i}}, 1 \leq i \leq k$ s.t. $x_{\alpha}=x_{\beta_{i}}+\ldots+x_{\beta_{k}}$ and then $M_{\alpha} \cap\left(\sum_{i=1}^{k} M_{\beta_{i}}\right) \neq 0$ so $\left\{M_{\alpha}, M_{\beta_{1}}, \ldots, M_{\beta_{k}}\right\}$ is dependent set.

Claim 4.6.8

If T independent subset of S, then there exists $T_{0}, T \subseteq T_{0} \subseteq S$, s.t. T_{0} is maximal independent containing T.
Proof: Using Zorn's Lemma, look at the set $\mathcal{B}=\{B \subseteq S \mid T \subseteq B$ and B is independent $\} . \mathcal{B} \neq \varnothing$ as $T \in \mathcal{B}$. Given any chain in $\mathcal{B}: B \subset B^{\prime} \subset \ldots$ the union B^{*} will be in \mathcal{B}, otherwise we would have B^{*} dependent and so a finite subset of B^{*} would be dependent and contained in an element of the chain.
Thus by Zorn, \mathcal{B} has maximal element.

Definition 4.6.9 (Direct sum) If $M=\sum_{\alpha \in A} M_{\alpha},\left\{M_{\alpha}\right\}_{\alpha \in A}$ independent, We say M is a direct sum of the M_{α} and write $M=\bigoplus_{\alpha \in A} M_{\alpha}$.

Definition 4.6.10 (Completely reducible) M is completely reducible if it is a direct sum of irreducible submodules.
e.g. any irreducible module is completely reducible!

Lemma 4.6.11

Suppose $\left\{M_{\alpha}\right\}_{\alpha \in A}$ independent set of submodules of M and N submodule of M s.t. $N \cap\left(\sum_{\alpha \in A} M_{\alpha}\right)=0$, then $\left\{M_{\alpha}\right\}_{\alpha \in A} \cup\{N\}$ is independent.

Proof: Suppose not, then we have $\beta \in A$ and $0 \neq x_{\beta} \in M_{\beta}$ s.t. $x_{\beta}=y+x_{\alpha_{1}}+\ldots+x_{\alpha_{k}}$ for some $y \in N, x_{\alpha_{i}} \in M_{\alpha_{i}}$, $\alpha_{i} \in A$.
Then $y=x_{\alpha_{1}}+\ldots+x_{\alpha_{k}}-x_{\beta} \in N \cap\left(\sum_{i=1}^{k} M_{\alpha_{i}}+M_{\beta}\right)=0$ so $y=0$. giving $x_{\beta} \in \sum_{i=1}^{k} M_{\alpha_{i}}$ contradiction to independence.

Lemma 4.6.12

Suppose $\left\{M_{\alpha}\right\}_{\alpha \in A}$ independent set of irreducible submodules and $M=\sum_{\alpha \in A} M_{\alpha}$ (i.e. M completely reducible). and let $N \subseteq M$ submodule.
Then there exists a subset $B \subset A$ s.t. $\{N\} \cup\left\{M_{\beta}\right\}_{\beta \in B}$ is independent.
Proof: Assume first $N=M$ - trivial. So now $N \neq M$. Define $\mathcal{B}=\left\{B \subseteq A \mid\left\{N \cup M_{\beta}\right\}_{\beta \in B}\right.$ is independent $\}$. $\mathcal{B} \neq \varnothing$ as if $M \neq N$ then we have α s.t. $M_{\alpha} \not \subset N$, in which case $M_{\alpha} \cap N=0$ as $M_{\alpha} \cap N$ is a submodule of M_{α} which is irreducible. So $\left\{N, M_{\alpha}\right\}$ independent and $\{\alpha\} \in \mathcal{B}$.
We will continue this next week....

Corollary 4.6.13

Taking $N=0$ we get that if $M=$ sum of irreducibles. Then $M=$ direct sum of the irreducibles.

Corollary 4.6.14

If M is completely reducible then every submodute N of M has a direct complement (i.e. the lattice of submodules

Example 4.6.15 () Let V be a vector space over a field F, we can write $V=\sum_{x \in V} F x$. Each $F x$ is a one dimensional subspace, and so it is irreducible. By the first corollary, V is a direct sum of some of the $F x$, i.e. V has a basis.

Lemma 4.6.16
Suppose M is a module s.t. its lattice of submodules is fully complemented. Then so are $L(N)$ and $L(\bar{M})$ where N is a submodule of M and \bar{M} is homomorphic image of M.

Remarks 4.6.17 We define $L(M)=\{N \mid 0 \subseteq N \subseteq M$ submodule $\}$.

Proof: Let $P \subseteq N$ be a submodule of N so it is also a submodule of M and so has a direct complement P^{\prime}. $M=P \oplus P^{\prime}$.
And then, $P^{\prime} \cap N$ is a direct complement for P inside N as:

$$
N=\left(P \oplus P^{\prime}\right) \cap N=\underbrace{(P \cap N)}_{P} \oplus\left(P^{\prime} \cap N\right)
$$

Now let $\bar{M}=M / P$ with P submodule. Since P has a direct complement in M, P^{\prime} i.e. $P^{\prime} \oplus P \cong M$. Then $P^{\prime} \cong \bar{M}$. By what we already have shown, $L\left(P^{\prime}\right)$ is fully complemented, and so $L(\bar{M})$.

Lemma 4.6.18
Suppose $M \neq 0, L(M)$ is fully complement. Then M contains irreducible submodules.

Remarks 4.6.19 \mathbb{Z} has no irreducible submodules.
Proof: Let $x \neq 0$ be in M and look at $\mathcal{N}=\{N \mid N$ submodule of M and $x \notin N\}$. By Zorn, \mathcal{N} contains maximal elements. Let P be a maximal element in \mathcal{N}.
Let K be a direct complement for P in $M: K \oplus P=M$. We claim that K is irreducible.
Suppose $K=K^{\prime} \oplus K^{\prime \prime}$, we want to show that one of these has to be 0 . Assume towards contradiction that $K^{\prime}, K^{\prime \prime} \neq 0 . P \subsetneq P \oplus K^{\prime}$, so $x \in P \oplus K^{\prime}$. And $P \subsetneq P \oplus K^{\prime \prime}$ so $x \in P \oplus K^{\prime \prime}$. We can write $p_{2}+k^{\prime \prime}=x=p_{1}+k^{\prime}$ for $p_{1}, p_{2} \in P$ and $k^{\prime} \in K^{\prime}$ and $k^{\prime \prime} \in K^{\prime \prime}$. Then:

$$
\underbrace{p_{1}-p_{2}}_{\in P}=\underbrace{k^{\prime}-k^{\prime \prime}}_{\in K} \Rightarrow p_{1}-p_{2}=0 \Rightarrow k^{\prime}-k^{\prime \prime}=0 \Rightarrow k^{\prime}=k^{\prime \prime} \Rightarrow k^{\prime}=0=k^{\prime \prime}
$$

Then we get $x=p_{1} \in P$, contradiction.
Theorem 4.6.20
The following are equivalent for a module M :

1. $M=\sum M_{\alpha}$ where M_{α} irreducible.
2. M is completely reducible.
3. $L(M)$ is fully complemented.

Proof: $1 \Rightarrow 2$: by corollary 4.6.13.
$2 \Rightarrow 3$: by corollary 4.6.14.

It remains to show $3 \Rightarrow 1$: By lemma 4.6.18, M contains irreducible submodules. Let:

$$
M^{\prime}=\sum_{N \text { irreducible submodule of } M} N
$$

We claim that $M^{\prime}=M$. Suppose $M^{\prime} \subsetneq M$ then M^{\prime} has a direct complement $0 \neq M^{\prime \prime}$ s.t. $M^{\prime} \oplus M^{\prime \prime}=M$. By lemma 4.6.16, $L\left(M^{\prime \prime}\right)$ is fully complemented and so by lemma 4.6.18, $M^{\prime \prime}$ contains irreducible submodule $P \neq 0$.
But then P is also an irreducible submodule of M and so $P \subseteq M^{\prime}$, contradiction (as the irreducible submodules of M are in M^{\prime}).

Definition 4.6.21 Let M be module, N an irreducible module:

$$
\begin{aligned}
M(N) & =\text { homogeneous complement of } M \text { determined by } N \\
= & \sum \begin{array}{l}
N^{\prime} \subseteq M \text { submodule } \\
\\
\\
\\
\\
N^{\prime} \cong N
\end{array}
\end{aligned}
$$

Remarks 4.6.22 If M is not submodule isomorphic to N then $M(N)=0$.

Theorem 4.6.23

Let $M=\bigoplus_{\alpha \in A} M_{\alpha}, M_{\alpha}$ irreducible submodules. Then:

1. For any $N \neq 0$ irreducible submodule of M we have:

$$
M(N)=\sum_{M_{\alpha} \text { s.t. } M_{\alpha} \cong N} M_{\alpha}
$$

2. $M=\underset{N \text { irreducible }}{\bigoplus} M(N)$ (sum runs over representative of all isomorphism types of irreducible modules). N irreducible $N \neq 0$
And of converse if $N \not \approx P$ then $M(N) \cap M(P)=0$.

Proof: $M(N) \supseteq \bigoplus_{M_{\alpha} \cong N} M_{\alpha}$ is trivial.
It remains only to show $M(N) \subseteq \bigoplus_{M_{\alpha} \cong N} M_{\alpha}$.
Let N^{\prime} be a submodule of M which is isomorphic to N. We need to show that $N^{\prime} \subseteq \bigoplus_{M_{\alpha} \cong N} M_{\alpha}$.
As N^{\prime} is irreducible it is generated by a single element $N^{\prime}=R x$. Since $M=\bigoplus_{\alpha \in A} M_{\alpha}$, there exists $\alpha_{1}, \ldots, \alpha_{k} \in A$
s.t. $N^{\prime} \subset M_{\alpha_{1}} \oplus \ldots \oplus M_{\alpha_{k}}$.

Using projections π_{α} determined by the direct sum decomposition of M we get:

$$
N^{\prime} \subset \pi_{\alpha_{1}}\left(N^{\prime}\right) \oplus \pi_{\alpha_{2}}\left(N^{\prime}\right) \oplus \ldots \oplus \pi_{\alpha_{k}}\left(N^{\prime}\right)
$$

Since M_{α} is irreducible for any $\alpha, \pi_{\alpha}\left(N^{\prime}\right)$ submodule of M_{α} so equal to either 0 or M_{α}. In fact by Schur's Lemma, each $\left.\pi_{\alpha_{i}}\right|_{N}$ homomorphism from N^{\prime} to $M_{\alpha_{i}}$ (both of which are irreducible) will be either 0 or an isomorphism. Not all will be 0 , as $N^{\prime} \subset \pi_{\alpha_{1}}\left(N^{\prime}\right) \oplus \ldots \oplus \pi_{\alpha_{k}}\left(N^{\prime}\right)$.
If $N^{\prime} \cong N$ then $N^{\prime} \subseteq$ sum of some of the M_{α} that are isomorphic to N. As if $M_{\alpha_{i}} \cong N^{\prime}\left(\left.\pi_{\alpha_{i}}\right|_{N_{i}^{\prime}}\right.$ =isomorphism). Then $M_{\alpha_{i}} \cong N^{\prime} \cong N$. So N^{\prime} is indeed contained in $\underset{M_{\alpha} \cong N}{\bigoplus} M_{\alpha}$.

Chapter 5

Structure theory of rings

5.1 Structure theory

Any left R-module, M gives rise to a representation $\rho: R \rightarrow \operatorname{End} M$ by defining: $\rho(a) x=a \cdot x$. Likewise, every representation of R into additive group M determines an action of R on M turning it into an R-module. ker $\rho=\{b \in R \mid b \cdot M=0\}=\operatorname{ann}_{R} M$ 2-sided ideal in R.

Definition 5.1.1 ρ is a faithful representation if $\operatorname{ker} \rho=0$.
M is a faithful module if $\operatorname{ann}_{R} M=0$.
For any $x \in M$ define: $\operatorname{ann}_{R} x=\{a \in R \mid a x=0\}$. This is a left ideal in R.
Definition 5.1.2 A representation ρ is called irreducible if the corresponding module is irreducible.
Claim 5.1.3
$\operatorname{ann}_{R} M=\bigcap_{x \in M} \operatorname{ann}_{R} x$.
Claim 5.1.4
$R x \cong R / \operatorname{ann}_{R} x$ (as left R-module).

Definition 5.1.5

1. R is primitive if it has a faithful irreducible representation.
2. R is semi-primitive if for any $a \neq 0$ in R there exists an irreducible representation ρ s.t. $\rho(a) \neq 0$.

Clearly, primitive $\Rightarrow s$ semi-primitive.
Definition 5.1.6 R is a sub-direct product of rings $\left\{R_{\alpha}\right\}_{\alpha \in A}$ if R can be embedded in $\prod_{\alpha} R_{\alpha} \cdot i: R \hookrightarrow \prod_{\alpha} R_{\alpha}$, s.t. if p_{α} is projection, $p_{\alpha}: \prod_{\alpha \in R} R_{\alpha} \rightarrow R_{\alpha}$, then $i_{\alpha}=p_{\alpha} i$ is surjective from R onto R_{α}.

Example 5.1.7 () R is a sub-direct product of R with $R, a \in R, a \stackrel{i}{\mapsto}(a, a)$ embeds R in $R \times R$.
$p_{1}(a, b)=a$.
$p_{2}(a, b)=b$.
Example 5.1.8 () \mathbb{Z} is a sub-direct product of fields $\{\mathbb{Z} / p \mathbb{Z}\}_{p \text { prime }} . \quad i: \mathbb{Z} \rightarrow \prod_{p \text { prime }} \mathbb{Z} / p \mathbb{Z} . i(n)=$ $(n(\bmod p))_{p}=p$ th coordinate.
Clearly if π_{p} projection of $\prod_{p \text { prime }}(\mathbb{Z} / p \mathbb{Z})$ onto $\mathbb{Z} / p \mathbb{Z}$. Then $i \pi_{p}=$ surjective.

Proposition 5.1.9

The following conditions on a ring are equivalent:

1. R is semi-primitive.
2. R has a faithful completely reducible representation/module.
3. R is a sub-direct product of primitive rings.

Proof: $1 \Rightarrow 2$: For any $a \neq 0$ in R let M_{a} be an irreducible module s.t. $a \cdot M_{a} \neq 0$ (or equivalently $\rho_{M_{\alpha}}(a) \neq 0$). Look at $M=\bigoplus_{a \neq 0} M_{a}$. By definition, it is a completely reducible. Let $b \in R$ and assume $b \cdot M=0$ then $b M_{a}=0$ for all $a \in R$ but $b \cdot M_{b} \neq 0$ contradiction.
$2 \Rightarrow 3$:
Let $M=\bigoplus_{\alpha} M_{\alpha}, M_{\alpha}$ irreducible and $\operatorname{ann}_{R} M=0$. Note that:

$$
0=\operatorname{ann}_{R} M=\bigcap_{\alpha} \operatorname{ann}_{R} M_{\alpha}
$$

Since M_{α} is irreducible. Let $R_{\alpha}=R / \operatorname{ann}_{R} M_{\alpha}$ (the $\operatorname{ann}_{R} M_{\alpha}$ is a two sided ideal). We can regard M_{α} as in $R_{\alpha^{-}}$ module by defining: $\left(a+\operatorname{ann}_{R} M_{\alpha}\right) x=a x$ for $x \in M_{\alpha}, a \in R$. This is well-defined as if $a+R_{\alpha}=a^{\prime}+R_{\alpha}$ then $a-a^{\prime} \in \operatorname{ann}_{R} M_{\alpha}$ so that $\left(a-a^{\prime}\right) x=0 \forall x \in M_{\alpha}$ and $a x=a^{\prime} x$.
M_{α} is a faithful R_{α}-module, so R_{α} is a primitive ring. $i: R \rightarrow \prod_{\alpha} R_{\alpha}$, natural embedding: $i(a)_{\alpha}=a+\operatorname{ann}_{R} M_{\alpha} \in R_{\alpha}$. i is 1-1 as $\bigcap_{\alpha} \operatorname{ann}_{R} M_{\alpha}=0$ and $i_{\alpha}=p_{\alpha} \cdot i$ is surjection onto $R_{\alpha}, p_{\alpha}: i_{\alpha} R_{\alpha} \rightarrow R_{\alpha}$.
$3 \Rightarrow 1$: Suppose $i: R \rightarrow \prod_{\alpha} R_{\alpha}$ embedding, R_{α} is primitive and if p_{α} projection of $\prod_{\alpha} R_{\alpha}$ onto R_{α} then $p_{\alpha} i$ is surjection.
For every α we have an irreducible faithful R_{α}-module: M_{α}. Suppose the representation associated with this is ρ_{α}. Let $a \neq 0$ in R :

$$
\bigcap_{\alpha} \operatorname{ker} \rho_{\alpha} i_{\alpha} \underbrace{=}_{\rho_{\alpha} \text { is faithful, so } \operatorname{ker} \rho_{\alpha}=0} \bigcap_{\alpha} \operatorname{ker} i_{\alpha}=0
$$

as if $b \in \bigcap_{\alpha} \operatorname{ker} i_{\alpha}=0$ then $i_{\alpha}(b)=0$ for all α, so $p_{\alpha}(i(b))=0$ for all α.
p_{α} projection form $\prod_{\alpha} R_{\alpha} \rightarrow R_{\alpha}$ so $p_{\alpha}(i(b))=0$ for all $\alpha \Longleftrightarrow i(b)=0 \Longleftrightarrow b=0 . \rho_{\alpha} i_{\alpha}: R \rightarrow \operatorname{End} M_{\alpha}$ is a representation of R.
Now let $a \neq 0$ in R then as $\bigcap_{\alpha} \operatorname{ker} \rho_{\alpha} i_{\alpha}=0$, we must have some α s.t. $a \notin \operatorname{ker} \rho_{\alpha} i_{\alpha}$ so $\rho_{\alpha} i_{\alpha}(a) \neq 0$. So R is semi-primitive.

An "internal" characterization of primitive and semi-primitive:
Definition 5.1.10 Let I be a left ideal of $R,(I: R)=\{b \in R \mid b R \subseteq I\}$.
Lemma 5.1.11
$I \supseteq(I: R)$ and $(I: R)$ is a two-sided ideal.
Proof: Suppose $K \subseteq I$, 2-sided ideal, then for any $b \in K: b R \subseteq K \subseteq I$ so $b \in(I: R)$. So $(I: R)=$ the largest 2-sided ideal contained in I.
Now note that $(I: R)$ is clearly additive, and it is multiplicative, hence it is a two-sided ideal.

Claim 5.1.12

If $M \cong R / I$ (isomorphism as left R-modules) then $\operatorname{ann}_{R} M=(I: R)$.
Proof: If $b \in(I: R)$.

Remarks 5.1.13 M can be regarded as an R-module by defining $a x=a(r+I)=a r+I$ for $r+I=x \in M, r \in$ $R, a \in R$, we can show it is well-defined.

So $b R \subseteq I$, so $b(r+I)=\underbrace{b r}_{\in I}+I=I$. So $b M=0$ and $b \in \operatorname{ann}_{R} M$. Conversely if $b \in \operatorname{ann}_{R} M$ then for any $r \in R$, $b r \in I$ and so $b M=0$.

Claim 5.1.14

1. R is primitive if and only if R contains a maximal left ideal I containing no nonzero two-sided ideal.
2. R is semi-primitive if and only if $R \neq 0$ and $\bigcap_{\text {Imaximal left ideal }}(I: R)=0$.

Proof:

1. If R is primitive we have an irreducible module M and $\operatorname{ann}_{R} M=0$. By previous claim $R / I \cong M$ for some maximal left ideal in $R .0=\operatorname{ann}_{R} M=(I: M)$ and so I contains no nonzero two-sided ideal. Converse: read from end to beginning.
2. Suppose $R \neq 0$ and $\bigcap_{R}(I: R)=0$. For I a maximal left idea R / I would be an irreducible R-module. We form the direct sum: $\bigoplus^{R / I}=M . \operatorname{ann}_{R} M=\bigcap_{R} \quad \operatorname{ann}_{R}(R / I)=$
I maximal left ideal $\quad I$ maximal left ideal in R $\bigcap(I: R)=0$ by assumption. So, for any $0 \neq a \in R$ we have some maximal left ideal I s.t. I maximal left ideal in R $a \notin(I: R)$ and so $a \notin \operatorname{ann}_{R}(R / I)$ so R is semi-primitive.
Conversely, if R is semi-primitive then for any $a \neq 0$ in R we have an irreducible module M_{a} s.t. $a \cdot M_{a} \neq 0$. So we have a maximal left ideals I_{a} s.t. $R / I_{a} \cong M_{a}$. Since $a M_{a} \neq 0$ we must have that: $\bigcap_{0 \neq a \in R} \operatorname{ann}_{R} M_{a}=0$. $\bigcap_{0 \neq a \in R} \operatorname{ann}_{R} M_{a}=\bigcap_{0 \neq a \in R}\left(I_{a}: R\right)=0$ but note that it is trivial that: $\bigcap_{I \text { maximal left ideal }}(I: R) \subseteq \bigcap_{0 \neq a \in R}\left(I_{a}: R\right)$ hence $\quad \cap \quad(I: R)=0$.

Imaximal left ideal

Corollary 5.1.15

R is simple $\rightarrow R$ is primitive.

Remarks 5.1.16 Converse is not true - example later.
Corollary 5.1.17
If R is commutative:

1. R is primitive if an only if R is a field (if and only if R is simple).
2. R is semi-primitive if and only if R is a sub-direct product of fields.

Example 5.1.18 () \mathbb{Z} is a sub-direct product of $\mathbb{Z} / p \mathbb{Z}, p$ is primitive. $i: \mathbb{Z} \hookrightarrow \prod_{p \text { prime }} \mathbb{Z} / p \mathbb{Z}$, so \mathbb{Z} is a semiprimitive ring.

5.2 Jacobson Radical

Definition 5.2.1 $J(R)=$ Jacobson radical $=\bigcap_{\rho \text { irreducible representation }} \operatorname{ker} \rho$.
$J(R)$ is a two-sided ideal of R (intersection of two-sided ideals).

Definition 5.2.2 if $P \triangleleft R$ ideal in R we say it is a primitive ideal if R / P is primitive ring.

Example 5.2.3 () If P is a maximal ideal then it is primitive.

Lemma 5.2.4

Proof: If $P=(I: R), I$ a maximal left ideal in R then $M=R / I$ is irreducible R-module. $\operatorname{ann}_{R} M=(I: R)=P$. Regard M as an R / P-module by defining for $x \in M, a \in R$:

$$
(a+P) x=a x
$$

It is well-defined as if $a+P=a^{\prime}+P \Rightarrow \underbrace{\left(a-a^{\prime}\right)}_{\in P=\mathrm{ann}_{R} M} x=0$ so $a x=a^{\prime} x . M$ is a faithful R / P module and irreducible.
So R / Y is a primitive ring.
Converse: Let $P \triangleleft R$ be a primitive ideal. So R / I is a primitive ring. So it has a faithful irreducible module M. Regard M as an R-module by defining $x \in M, a \in R a x=(a+P) x \cdot a n n_{R} M=P$ as M is a faithful R / P-module (as it's an irreducible R / P-module).
M is an irreducible R-module, so corresponds to some maximal left ideal I s.t. $R / I \cong M$. And then as before $P=\operatorname{ann}_{R}(R / I)=(I: R)$.

Claim 5.2.5

1. $J(R)=\bigcap_{\text {Pprimitive ideal in } R} P$.
2. $J(R)=\bigcap_{\text {Imaximal left ideal of } R} I$.

Proof:

1. By defining:

$$
\begin{aligned}
J(R) & =\bigcap_{\rho \text { irreducible representations }} \operatorname{ker} \rho \\
& =\bigcap_{M \text { irreducible } R \text {-modules }} \operatorname{ann}_{R} M \\
& =\bigcap_{\text {Imaxaimal left ideal }} \operatorname{ann}_{R}(R / I) \\
& =\bigcap_{\text {Imaxaimal left ideal }}(I: R) \\
& \bigcap_{P \text { primitive itdeal in } R} P
\end{aligned}
$$

2. Note that $\operatorname{ann}_{R} M=\bigcap_{0 \neq x \in M} \operatorname{ann}_{R} x\left(\operatorname{ann}_{R} x=\right.$ left ideal). $\quad J(R)=\bigcap_{M \text { irreducible } R \text {-modules }} \operatorname{ann}_{R} M$. If M is irreducible and $x \in M, x \neq 0$ then $\operatorname{ann}_{R} x=$ maximal left ideal as map φ sending $a \in R$ to $a x$ has $\operatorname{ann}_{R} x=$ ker φ, φ is surjective and $M \cong R / \operatorname{ann}_{R} x\left(\operatorname{ann}_{R} x=\right.$ maximal left ideal). So:

$$
J(R)=\bigcap_{M \text { irreducible } R \text {-modules }} \operatorname{ann}_{R} M=\bigcap_{M \text { irreducible } R \text {-modules }}\left(\bigcap_{0 \neq x \in M} \operatorname{ann}_{R} x\right)
$$

But it's clear that:

$$
\bigcap_{M \text { irreducible } R \text {-modules }}\left(\bigcap_{0 \neq x \in M} \operatorname{ann}_{R} x\right) \supseteq \bigcap_{I \text { maximal left ideal }} I
$$

(because each $\operatorname{ann}_{R} x$ is a maximal left ideal). On the other hand, Left ideal $I \supseteq(I: R)$ so:

Example 5.2.6 () $\mathbb{Z} . I=\max ($ left $)$ ideal $\Longleftrightarrow I=p \mathbb{Z}$ with p prime.

$$
\bigcap_{I \text { maximal left ideal }} I=\bigcap_{p \text { prime }} p \mathbb{Z}=0
$$

So $J(\mathbb{Z})=0$.
$10 / 06 / 2014$
Theorem 5.2.7

1. R is semi-primitive if and only if $J(R)=0$ (follows from the fact that R is semi-primitive $\Longleftrightarrow \bigcap_{\text {Imaximal left idea }}(I: R)$.
2. If $R \neq 0, R / J$ is semi-primitive (i.e. $J(R / J)=0$) and if B is an ideal s.t. R / B is semi-primitive then $B \supseteq J$.

Proof:

1.
2. Given any ideal $B \triangleleft R, \bar{R}=R / B$. Every ideal $\bar{P} \triangleleft \bar{R}$ correspond to an ideal P of R s.t. $P \supseteq B$ and $\bar{R} / \bar{P} \cong R / P$. If P is primitive ideal then we have R / P primitive $\Longleftrightarrow \bar{R} / \bar{P}$ primitive $\Longleftrightarrow \bar{P}$ primitive in \bar{R}.
Now, suppose that R / B is semi-primitive. So

$$
J(R / B)=0 \Rightarrow \bigcap_{\bar{P} \text { primitive in } R / B} \bar{P}=0 \Rightarrow \bigcap_{\substack{\text { Pprimitive in } R}} P / B=0 \Rightarrow \bigcap_{\substack{P \text { primitive in } \\ P \supseteq B}} R / B=0
$$

So we get $\quad P=B$ so $B \supseteq J=\quad \cap$.

$$
\begin{array}{cc}
P \text { primitive in } R & P \text { primitive in } R \\
P \supseteq B & P \supseteq B
\end{array}
$$

Now look at $\tilde{R}=R / J$, by previous calculation:

$$
J(\tilde{R})=\bigcap_{\tilde{P} \text { primitive in } \tilde{R}} \tilde{P}=\bigcap_{\substack{\text { Primitive in } R \\ P \supseteq J}} P / J \underbrace{}_{\text {every primitive ideal } \supseteq J} \bigcap_{P \text { primitive in } R} P / J=\bigcap_{P \text { primitive in } R} P / J=J / J=0
$$

Recall: we say that R is local if the set of non-units $=$ a 2 -sided ideal.

Theorem 5.2.8

Let $R \neq 0$ be a ring. Then the following are equivalent:

1. R is local.
2. $J(R)$ is the set of non-units.
3. \exists ! maximal left ideal.
4. \exists ! maximal right ideal.

Remarks 5.2.9 If R is local then \exists ! maximal 2-sided ideal.
Proof: We will prove that $4 \Rightarrow 3$ later on. And it is trivial that $2 \Rightarrow 1$. We want to show that $1 \Rightarrow 3$:
Let $I=$ set of non-units. So I is a maximal left ideal and clearly the only one.
$3 \Rightarrow 2$:

$$
J(R)=\bigcap_{I \text { maximal left ideals }} I=\text { the unique maximal left ideal }
$$

Clearly $J(R) \subseteq$ set of non units.
Let x be a non-unit. Assume $x \notin J(R), R x$ is a left ideal as $R x \nsubseteq J(R)$ must have $R x=R$, So x is left invertible. So we have $y \in R$ s.t. $y x=1$.
Look at $R y$, if $R y=R$ then y is 2 -sided invertible, and its right inverse, x, will also be its left inverse meaning that x is a unit - contradiction. So $R y$ is a proper left ideal and so contained in $J(R)$. So $y \in J(R)$, so $1=y \cdot x \in J(R)$ - contradiction.
$3 \Rightarrow 4$:
Since $J(R)=$ the intersection of all maximal left ideal, we have that $J(R)=$ the unique maximal left ideal.
$J(R)$ is also a right ideal, Let I^{\prime} be a maximal right ideal containing $J(R)$ we want to show that it is the only maximal right ideal.
Suppose $I^{\prime \prime}$ is a maximal right ideal and $I^{\prime \prime} \neq I^{\prime}$. Let $x \in I^{\prime \prime} \backslash I^{\prime}$, so $x \notin J(R)$ (since $J(R) \subseteq I^{\prime}$).
As before if $R x=R$ so $\exists y \in R$ s.t. $y x=1$ so x as an element in $I^{\prime \prime}$ cannot be right invertible. So $R y$ is a proper left ideal. This gives $R y \subseteq J(R)$ so $y \in J(R)$ and $y x=1 \in J(R)$ a contradiction.

5.2.1 An element characterization of $J(R)=J$

Definition 5.2.10 For $z \in R, R$ a ring:

1. z is left quasi-regular if $1-z$ is left invertible in R. (z is right quasi-regular if $1-z$ is right invertible in R respectively).
2. z is quasi-regular if it is both left and right quasi-regular.
3. An ideal is left (right respectively) quasi-regular if all its elements are left (right respectively) quasi-regular.

Example 5.2.11 () If z is nilpotent that z is quasi-regular:

$$
(1-z)\left(1+z+z^{2}+\ldots+z^{k}\right)=1
$$

If $z^{k+1}=0$.

Theorem 5.2.12

1. $J(R)$ is a left quasi-regular ideal and it contains every left quasi-regular ideal.
2. $J(R)=\{z \in R \mid a z$ is left quasi-regular for all $a \in R\}$.
3. Every element of $J(R)$ is both left and right quasi-regular.

1*. "right" version of (1).
2*. "right" version of (2).

Proof:

1. Let $z \in J(R)$, Suppose that it is not a left quasi-regular, so $1-z$ is not left invertible so $R(1-z) \neq R$. So $R(1-z) \subseteq I_{0}, I_{0}$ is a maximal left ideal. So $1-z \in I_{0}$ but also $z \in I_{0}$ as $J(R) \subseteq I_{0}$ So $1=(1-z)+z \in I_{0}$, a contradiction.
We shall show that if Z is a left quasi-regular ideal then $Z \subseteq J(R)$. Suppose not, So there exists some maximal left ideal I s.t. $Z \nsubseteq I$. Because I is maximal, $I+Z=R$, so we can write $1=b+z$. With $b \in I$ and $z \in Z$, so z is left quasi-regular. So $b=1-z$ is left invertible but then $R b=R$ but $R b \subseteq I$ a contradiction. So $Z \subseteq J(R)$.
2. By (1) all elements of $J(R)$ are left quasi-regular and if $z \in J(R)$ so is $a z$ for all $a \in R$ and so $a z$ will be left quasi-regular as well.
Now, assume $a z$ is left quasi-regular for all $a \in R$. So $R z$ is a left quasi-regular ideal, so by (1), $R z \subseteq J(R)$ so $z \in J(R)$.
3. Let $z \in J(R)$. We need to show that $1-z$ is right invertible. Since $1-z$ is left invertible we have $s \in R$ s.t. $s(1-z)=1$. Let $y=1-s$, we have:

$$
1=(1-y)(1-z)=1-y-z+y z \Rightarrow y+z=y z \text { or }(y-1) z=y
$$

So y is a multiple of $z \in J(R)$ and so $y \in J(R)$. So y is left quasi regular so $1-y=s$ is left invertible. And so s is the 2 -sided inverse of $1-z$ and so z is quasi-regular.
$1^{*}, 2^{*}$. We can now define a so-called "right" Jacobson radical.

$$
J^{\prime}=\bigcap_{I^{\prime} \text { maximal right ideal }} I^{\prime}=\bigcap_{P^{\prime \prime} \text { right primitive" ideal }} P^{\prime}=\{z \mid z a \text { right quasi regular for all } a \in R\}
$$

By all previous theorems on left ideal and (3) we have that J^{\prime} is also a left quasi-regular ideal (we can repeat 3 on the other direction). But J contains all the left quasi-regular ideals so we get $J \supseteq J^{\prime}$. Since J^{\prime} is a right quasi-regular ideal $\left(1^{*}\right)$ and $\left(2^{*}\right)$ are true for J^{\prime}, we can have $\left(1^{*}\right)$ for J^{\prime} i.e. J^{\prime} contains every right quasi-regular ideal. But J is also a right quasi-regular ideal, So $J \subseteq J^{\prime}$ and $J=J^{\prime}$.

Corollary 5.2.13

R "left semi-primitivity" is equivalent to "right semi-primitivity".

5.2.2 Example of a primitive ring that is not simple

Let V be an infinite dimensional vector space over a division ring Δ. Left $L=\operatorname{End}_{\Delta} V=$ linear operators on V over Δ.
We shall show that L acts faithfully and irreducibly on V. The representation is identity map - so faithful.
To show irreducibility we need to show that if we have and element $x \in V$ s.t. $x \neq 0$ then $L x=V$. But if $y \in V$, we have a linear operator mapping x to y.
We show L is not simple. Let $I_{0}=\{l \in L \mid l(V)$ is finite dimension $\}$. We shall show that I_{0} is a non-trivial ideal. Clearly $I_{0} \neq 0, L$.
If $\varphi, \psi \in I_{0}$ then $(\varphi+\psi)(V)=$ finite dimension. Now let $\varphi \in I_{0}, l \in L$.
$l(\varphi(V))=$ image of a finite dimension subspace under l - so also finite dimension

$$
\varphi(l(V)) \subseteq \varphi(V)=\text { finite dimension } .
$$

So $\varphi l \in I_{0}$ and $l \varphi \in I_{0}$
Remarks 5.2.14 One can show that I_{0} is a minimal ideal.
If $\operatorname{dim}_{\Delta} V=\aleph_{0}$ then I_{0} is the only 2 -sided ideal in L so L / I_{0} is simple.
If $\operatorname{dim}_{\Delta} V>\aleph_{0}$ then we also have an ideal $I_{1} \supseteq I_{0}$ and $I_{1}=\{l \in L \mid l(V)$ has countable dimension $\}$.

Chapter 6

Density

6.1 Density theorem for completely reducible modules

Theorem 6.1.1 (Density theorem for completely reducible modules)
Let M be a completely reducible R-module.
Denote:

$$
\begin{aligned}
R^{\prime} & =\operatorname{End}_{R} M \\
R^{\prime \prime} & =\operatorname{End}_{R^{\prime}} M=\{\varphi \in \operatorname{End} M \mid \varphi \text { commutes with all Rendomorphisms }\}
\end{aligned}
$$

Let $\left\{x_{1}, \ldots, x_{n}\right\} \in M$ and $a^{\prime \prime} \in R^{\prime \prime}$ then there exists $a \in R$ s.t. $a^{\prime \prime} x_{i}=a x_{i}$ for all $i \leq i \leq n$.
In order to prove this theorem we use 2 lemmas:
Lemma 6.1.2
Let M completely reducible, If N is an R-submodule of M then N is an $R^{\prime \prime}$-submodule.
Proof: We know that M is completely reducible hence we have an R-submodule P s.t. $P \oplus N=M$. Let e be the projection of M onto N w.r.t the decomposition. $e(M)=N$. As N and P are R-submodules, e is an R-endomorphism. That is: $e \in R^{\prime}$. Let $a^{\prime \prime} \in R^{\prime \prime}$:

$$
a^{\prime \prime}(N)=a^{\prime \prime}(e(M))
$$

But $a^{\prime \prime}$ commutes with every R-endomorphism, in particular with e hence:

$$
=e\left(a^{\prime \prime}(M)\right) \subseteq e(M)=N
$$

Lemma 6.1.3
Let M be a module. $M^{(n)}=\underbrace{M \oplus \ldots \oplus M}_{n}$. Then $\operatorname{End}_{R} M^{(n)}=$ set of maps $\left(u, \ldots, u_{n}\right) \mapsto\left(v_{1}, \ldots, v_{n}\right)$ where:

$$
v_{i}=\sum a_{i, j}^{\prime} u_{j} \quad a_{i, j}^{\prime} \in R^{\prime}=\operatorname{End}_{R} M
$$

It is easy to show that each such map is an element of $\operatorname{End}_{R} M^{(n)}$. We want to show that every element is of this form.

Proof: Let $\ell \in \operatorname{End}_{R} M^{(n)}$. For any vector $\left(u_{1}, \ldots, u_{n}\right) \in M^{(n)}$ denote:

$$
\ell\left(0, \ldots, u_{i}, \ldots 0\right)=\left(u_{1, i}, \ldots, u_{n, i}\right)
$$

Let $a_{j, i}^{\prime}$ be a map sending $u_{i} \mapsto u_{j, i} . x \in M \ell(0, \ldots, \overbrace{x}^{i}, \ldots 0)=a_{j, i}^{\prime}=j$ th component of $\ell(0, \ldots, x, \ldots 0)$.
We claim $a_{j, i}^{\prime} \in R^{\prime}$. If $a \in R: a_{j, i}^{\prime}(a x)=j$ th component of $\ell(0, \ldots, a x, \ldots, 0)=\ell a(0, \ldots, x, \ldots 0)=a \ell(0, \ldots, x, \ldots, 0)=$ $a a_{j, i}^{\prime}(x)$ the transition from $\ell a=a \ell$ is because ℓ is R-endomorphism).

$$
\begin{aligned}
\ell\left(u_{1}, \ldots, u_{n}\right) & =\sum_{i=1}^{n} \ell\left(0, \ldots, u_{i}, \ldots, 0\right) \\
& =\sum_{i=1}^{n}\left(a_{1, i}^{\prime} u_{i}, a_{2, i}^{\prime} u_{i}, \ldots, a_{n, i}^{\prime} u_{i}\right) \\
& =\left(\sum_{i=1}^{n} a_{1, i}^{\prime} u_{i}, \ldots, \sum_{i=1}^{n} a_{n, i}^{\prime} u_{i}\right)
\end{aligned}
$$

as required.

6.1.1 Proof of the theorem

Recall that the theorem states:
Theorem 6.1.4 (Density theorem for completely reducible modules)
Let M be a completely reducible R-module.
Denote:

$$
\begin{aligned}
R^{\prime} & =\operatorname{End}_{R^{M}} M \\
R^{\prime \prime} & =\operatorname{End}_{R^{\prime}} M=\{\varphi \in \operatorname{End} M \mid \varphi \text { commutes with all Rendomorphisms }\}
\end{aligned}
$$

Let $\left\{x_{1}, \ldots, x_{n}\right\} \in M$ and $a^{\prime \prime} \in R^{\prime \prime}$ then there exists $a \in R$ s.t. $a^{\prime \prime} x_{i}=a x_{i}$ for all $i \leq i \leq n$.
We want to prove this theorem using the lemmas we've just shown. Proof: For $n=1$ we have $x \in M$ (completely reducible module), $a^{\prime \prime} \in R^{\prime \prime}$. We need $a \in R$ s.t. $a^{\prime \prime} x=a x$.
Look at $R x=R$-submodule of M. So by lemma 6.1.2 it is an $R^{\prime \prime}$-submodule. So $a^{\prime \prime} x \in R x$ so $\exists a \in R$: $a^{\prime \prime} x=a x$.
For arbitrary n we use the case for $n=1$ w.r.t module $M^{(n)}$ (and use the lemma 6.1.3).
$M^{(n)}$ is also completely reducible. Let $x_{1}, \ldots, x_{n} \in M, a^{\prime \prime} \in R^{\prime \prime}$ and define $\varphi \in \operatorname{End} M^{(n)}:\left(x_{1}, \ldots, x_{n}\right) \mapsto$ $\left(a^{\prime \prime} x, \ldots, a^{\prime \prime} x_{n}\right) . \varphi$ will be an element of $\operatorname{End}_{\operatorname{End}_{R} M^{(n)}} M^{(n)}$. Since elements of $\operatorname{End}_{R} M^{(n)}$ are, by lemma 6.1.3, defined by matrices of elements in $\operatorname{End}_{R} M=R^{\prime}$ and $a^{\prime \prime}$ commutes with each $a_{j i}^{\prime}$ so $\exists a \in R$ s.t.

$$
\begin{aligned}
\left(a x, \ldots, a x_{n}\right)=a\left(x_{1}, \ldots, x_{n}\right) & =\varphi\left(x_{1}, \ldots, x_{n}\right) \\
& =\left(a^{\prime \prime} x_{1}, \ldots, a^{\prime \prime} x_{n}\right)
\end{aligned}
$$

6.2 Another definition of density

Definition 6.2.1 Let V be a vector space over a division ring $\Delta, S \subseteq \operatorname{End}_{\Delta} V=$ linear transformations on V is called dense in End ΔV if given $x_{1}, \ldots, x_{n} \in V$ linear independent over Δ and $y_{1}, \ldots, y_{n} \in V$ there exists $\varphi \in S$ s.t. $\varphi \overline{\left(x_{i}\right)}=y_{i}$.

Remarks 6.2.2 If V is finite dimensional, the only dense set in $\operatorname{End}_{\Delta} V$ is itself (as taking x_{1}, \ldots, x_{n} to be a basis $\exists!\varphi \in \operatorname{End}_{\Delta} V$ mapping bases to any set of n elements).

6.2.1 Density theorem for primitive rings

Theorem 6.2.3 (Density theorem for primitive rings)

R is primitive if and only if R is isomorphic to a dense ring of linear transformation in a vector space over a division ring.

Proof: If R is primitive, we have M irreducible module and representation $\rho: R \rightarrow \operatorname{End} M$ with trivial kernel (so M is faithful irreducible module). By Schur's Lemma we know that $\operatorname{End}_{R} M$ is a division ring which we call Δ. $R \cong \rho(R)$ is a subring of $\operatorname{End} M$ but in fact is a subring of $\operatorname{End}_{\Delta} M$ as if $\varphi \in \Delta$ and $a \in R, x \in M$ then:

$$
a \varphi(x) \underbrace{=}_{\varphi \in \operatorname{End}_{R} M} \varphi(a x)
$$

So $R \hookrightarrow \operatorname{End}_{\Delta} M$. It remains to show that R is dense in $\operatorname{End}_{\Delta} M$. Let $x_{1}, \ldots, x_{n} \in M$ linear independent over Δ and $y_{1}, \ldots, y_{n} \in M$ arbitrary. $\exists \ell$ linear transformation in $\operatorname{End}_{\Delta} M$ s.t. $\ell\left(x_{i}\right)=y_{i}, 1 \leq i \leq n$. By our last theorem (Density theorem for completely reducible modules), since M is a completely reducible module as it is irreducible, we have $a \in R$ s.t. $a\left(x_{i}\right)=y_{i}, \leq i \leq n$. So it is dense.
Now, assume $R \cong$ dense ring of linear transformation in a vector space M over a division ring Δ. Regard M as an R-module by defining $a x=\rho(a) x, x \in M$. M will be irreducible as if $x \in M \neq 0$ and arbitrary $y \in M$. As R is dense, we have $a \in R$ s.t. $a x=y$, so $R x=M . M$ is faithful as ρ is given as an isomorphism.

Chapter 7

Structure theorems

7.1 Structure theorem for primitive artinian rings

Theorem 7.1.1 (Structure theorem for primitive artinian rings)

The following conditions on a nonzero ring R are equivalent:

1. R is simple and left-artinian.
2. R is primitive and left-artinian.
3. $R \cong \operatorname{End}_{\Delta} M, M$ is finite dimension vector space over a division ring Δ.

The $1 \Longleftrightarrow 3$ is known as the Wedderburn-Artin theorem for simple artinian rings. Note that we already know that $1 \Rightarrow 2$ as we've seen simple \Rightarrow primitive. Proof: We first show $2 \Rightarrow 3$:
As in previous theorem, we have M faithful irreducible module, $\Delta=\operatorname{End}_{R} M$ division ring and $R \cong$ dense ring of linear transformations of M over Δ.
If we show M finite dimension then $R \cong \operatorname{End}_{\Delta} M$ as it is dense in $\operatorname{End}_{\Delta} M$.
Now, suppose M infinite dimension over Δ, so we have infinite linear independent set $x_{1}, \ldots, x_{n}, \ldots$. Let $I_{j}=$ $\operatorname{ann}_{R}\left(x_{j}\right)$, These are left ideals in $R: I_{1} \cap \ldots, \cap I_{n}=\operatorname{ann}_{R}\left\{x_{1}, \ldots, x_{n}\right\}$. There exists a linear transformation in $\operatorname{End}_{\Delta} M$ sending x_{1}, \ldots, x_{n} to 0 and x_{n+1} to a nonzero element. As R is dense in $\operatorname{End}_{\Delta} M$ we have $a \in R$ s.t. $\begin{cases}a x_{i}=0 & 1 \leq i \leq n \\ a x_{n+1} \neq 0 & \text {. So } a \in I_{1} \cap \ldots \cap I_{n} \text { but } a \notin I_{1} \cap \ldots \cap I_{n+1} \text {. So we get a properly descending sequence of }\end{cases}$ left ideals, contradiction to the artinian property.
We now want to show that $3 \Rightarrow 1$:
Suppose $R=\operatorname{End}_{\Delta} M, M$ finite dimensional over a division ring Δ. So by assignment 4 this ring is simple! It is an artinian ring as R finite dimensional over Δ as well!

Remarks 7.1.2 $\operatorname{End}_{\Delta} M$ are anti-isomorphic to $M_{n}(\Delta)$ where $n=\operatorname{dim}_{\Delta} M . \varphi \Longleftrightarrow A, \psi \Longleftrightarrow B$ we can show that $\varphi \psi \Longleftrightarrow\left(B^{T} A^{T}\right)^{T}$ only if Δ commutative we get $B^{T} A^{T}(A B)^{T}$.

Chapter 8

Hilbert's Nullstellensatz

8.1 Definition

Let $F \subseteq E$ be fields. $R=F\left[X_{1}, \ldots, X_{n}\right]$.
Definition 8.1.1 Given $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$ denote $f(\vec{x})=f\left(x_{1}, \ldots, x_{n}\right), f \in R$. Given $Q \subset R$ denote:

$$
\operatorname{Zer}(Q)=\left\{\vec{x} \in E^{n} \mid f(\vec{x}=0 \forall f \in Q)\right\}=\text { Variety determined by } Q
$$

Definition 8.1.2 A set $A \subseteq E^{n}$ is called algebraic if it is of the form $\operatorname{Zer}(Q)$ for some $Q \subset R$.

Example 8.1.3 () $\operatorname{Zer}\left(\left\{0=0_{R}\right\}\right)=E^{n}$.

Example 8.1.4 () $\operatorname{Zer}(R)=\varnothing$.

Example 8.1.5 () If $E=F$, then $\left\{\left(x_{1}, \ldots, x_{n}\right)\right\}=\operatorname{Zer}\left(\left\{X_{i}-x_{i} \mid 1 \leq i \leq n\right\}\right)$.

Example 8.1.6 () $R=\mathbb{Q}[X, Y]$, Then:

$$
\operatorname{Zer}\left(\left\{Y-X^{2}\right\}\right)=\text { parabola } y=x^{2} \text { in } \mathbb{R}^{2}
$$

Lemma 8.1.7

The collection of algebraic sets in E^{n} is closed under finite unions and arbitrary intersections.
Proof: If $A_{\alpha}=\operatorname{Zer}\left(Q_{\alpha}\right)$ then:

$$
\bigcap A_{\alpha}=\operatorname{Zer}\left(\bigcup Q_{\alpha}\right)
$$

$\operatorname{Zer}\left(Q_{1}\right) \cup \operatorname{Zer}\left(Q_{2}\right)=\operatorname{Zer}\left(\left\{f \cdot g \mid f \in Q_{1}, g \in Q_{2}\right\}\right)$.

Definition 8.1.8 Zariski Topology on E^{n} : Closed sets = algebraic sets.
Theorem 8.1.9

$$
\text { If } F \subseteq \bar{F} \subseteq E . \text { If } A \text { algebraic set over } F \text { in } \bar{F}^{n} \text { then there exists a unique algebraic set } B \text { in } E^{n} \text { s.t. } B \cap \bar{F}^{n}=A \text {. }
$$

Remarks 8.1.10 B doesn't have to be equal to A. For example, consider the zero polynomial.

We shall prove this theorem later, first we will see some corollaries.

Corollary 8.1.11

If $S \subseteq E^{n}$ be a nonempty algebraic set over $F . F \subseteq E, E$ algebraic closed. Then S contains a point all of whose coordinates are algebraic over F.

Proof: (of the corollary)
Suppose $S \cap \bar{F}^{n}=\varnothing$.
Then S and \varnothing are 2 distinct sets over F in E^{n} with equal intersections. Contradiction to the uniqueness in thm, taking $A=\varnothing$.

Definition 8.1.12 Let $A \subseteq E^{n} . \operatorname{Pol}(A)=\{f \in R \mid f(\vec{x})=0 \vec{x} \in A\}$ (or $\left.I(A)\right)$
Lemma 8.1.13
If A is algebraic then:
$\operatorname{Zer}(\operatorname{Pol}(A))=A$.

Remarks 8.1.14 $\operatorname{Zer}(\operatorname{Pol}(A)) \supseteq A$ always, even if A is not algebraic.
Proof: If $\vec{x} \in A, f(\vec{x})=0$ for all $f \in \operatorname{Pol}(A)$ so $\vec{x} \in \operatorname{Zer}(\operatorname{Pol}(A))$.
Now show the converse.
As A algebraic, there exists $Q \subseteq R$ s.t. $A=\operatorname{Zer}(Q)$. If $f \in Q$ then $f(\vec{x})=0$ for all $\vec{x} \in A$. So $f \in \operatorname{Pol}(A)$, so $Q \subseteq \operatorname{Pol}(A)$.
Clearly, for any $B, C \subseteq R$:

$$
B \subseteq C \rightarrow \operatorname{Zer}(B) \supseteq \operatorname{Zer}(C)
$$

Applying it to $Q \subseteq \operatorname{Pol}(A)$ we get that:

$$
A=\operatorname{Zer} Q \supseteq \operatorname{Zer}(\operatorname{Pol}(A))
$$

which completes the proof.

Remarks 8.1.15 $\operatorname{Pol}(A)$ is always an ideal.
So the lemma implies that every algebraic set is of the form $\operatorname{Zer}(I)$ for some ideal I in R.

Corollary 8.1.16

Every algebraic set is of the form $\operatorname{Zer}(Q)$ where Q is a finite set of polynomials.
Proof: By the Hilbert's basis theorem (which we won't prove in class, but it can be found in Isaacs: Graduate Algebra page 434).
If R is noetherian then so is $R[x]$.
And inductively we get that $F\left[X_{1}, \ldots, X_{n}\right]$ is noetherian, F is a field.
So we have that our ring $R=F\left[x_{1}, \ldots, x_{n}\right]$ is noetherian.
So if A is an algebraic set and $A=\operatorname{Zer}(I) . I \triangleleft R$ then I is finitely generated by a finite set Q in R and $A=\operatorname{Zer}(Q)$.

8.2 The Nullstellensatz

Theorem 8.2.1 (Nullstsllensatz)
Let $R \supseteq F, E$ is algebraic closed.
Let I ben an ideal in $R=F\left[X_{1}, \ldots, X_{n}\right]$ then $\operatorname{Pol}(\operatorname{Zer}(I))=\sqrt{I}$.

$$
\sqrt{I}=\operatorname{Nilrad}(I)=\left\{f \in R \mid \exists n \in \mathbb{N} f^{n} \in I\right\}
$$

Remarks 8.2.2 $\sqrt{I} \subseteq \operatorname{Pol}(\operatorname{Zer}(I))$ as if $f \in R$ and $f^{n} \in I$ then for $\vec{x} \in \operatorname{Zer}(I), f^{n}(\vec{x})=(f(\vec{x}))^{n}=0$.
So as $\vec{x} \in E^{n}$ we must have $f(\vec{x})=0$ so $f \in \operatorname{Pol}(\operatorname{Zer}(I))$.
First we show the weak Nullstellensatz:
Theorem 8.2.3 (The weak Nullstellensatz)
If I is a proper ideal of $R=F\left[X_{1}, \ldots, X_{n}\right], F \subseteq E$ and E is algebraic closed then: $\operatorname{Zer}(I) \neq \varnothing$.
Proof: Direct proof: $I \underset{\neq}{\triangleleft}$ (proper). There exists by Zorn a maximal ideal M of R containing I.
So $R / M=\bar{R}$ is a field. Clearly $M \cap F=\{0\}$ (as M contains no units). So we have an embedding of F in $\bar{R}: F \subseteq \bar{R}$.
Let $\alpha_{i}=X_{i}+M . R=F\left[X_{i}, \ldots, X_{n}\right]$. So $\bar{R}=F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$.
So as \bar{R} is a field we get that the α_{i} are algebraic over $F . F \subseteq \bar{R} \subseteq E$.
We claim $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \bar{R}^{n} \subseteq E^{n}$ is in fact an element of $\operatorname{Zer}(I)$ as if $f \in I$:

$$
f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=f\left(X_{1}+M, \ldots, X_{n}+M\right)=\overline{f\left(X_{1}, \ldots, X_{n}\right)}=\overline{0}
$$

as $f \in I \subseteq M$.
We shall now prove the Nullstellensatz: Proof: Remains to show:

$$
\operatorname{Pol}(\operatorname{Zer}(I)) \subseteq \sqrt{I}
$$

Let $f \in \operatorname{Pol}(\operatorname{Zer}(I))$. Need to show $\exists n \in \mathbb{N}: f^{n} \in I$. Let T be a new indeterminate. Look at the ring $S=R[T]=$ $F\left[X_{1}, \ldots, X_{n}, T\right]$.
Detnote by $I[T]=\{g \in S \mid$ coeffs of g lie in $I\}$. This is clearly an ideal in S. Look at the ideal: $J=I[T]+$ $(1-T \cdot f) S$. We claim: $J=S$.
Suppose not, then J is a proper ideal and we can use the weak Nullstellensatz with respect to S. So applying the weak Nullstellensatz to $S=F\left[X_{1}, \ldots, X_{n}, T\right]$ we have that $\operatorname{Zer}(J) \neq \varnothing$. So we have $\left(\alpha_{1}, \ldots, \alpha_{n}, \beta\right) \in E^{n+1}$ in Zer (J).
$I \subseteq J$ so $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \operatorname{Zer} I f \in \operatorname{Pol}(\operatorname{Zer}(I))$ so also $f(\vec{\alpha})=0$ but then as $1-T f \in J$ we get $1 \in J$ contradiction.
So we have:

$$
S=I[T]+(1-T f) S
$$

In particular, we have $u \in I[T], v \in S=R[T]$.

$$
1=u+(1-T f) v
$$

The above can be regarded as an identity over field of fraction of $R: R^{*}$.
$\frac{1}{f} \in R^{*}$ substitute in $1=u+(1-T f) v$ in place of T :

$$
1=u\left(\frac{1}{f}\right)+\left(1-\frac{1}{f} f\right) v\left(\frac{1}{f}\right)
$$

So $u\left(\frac{1}{f}\right)=1$.
Denote: $u(T)=a_{n} T^{n}+\ldots+a_{1} T+a_{0}, a_{i} \in I$.

$$
\begin{gathered}
1=a_{n} \frac{1}{f^{n}}+\ldots+a_{1} \frac{1}{f}+a_{0} \\
f_{n}=\underbrace{a_{n}+a_{n-1} f+\ldots+a_{1} f^{n-1}+a_{0} f^{n}}_{\in I}
\end{gathered}
$$

So $f^{n} \in I$ or $f \in \sqrt{I}$.

8.3 Leftovers

We now want to prove 8.1.9:

Theorem 8.3.1

$F \subseteq \bar{F} \subseteq E, E$ algebraic closed. We had $A \subseteq \bar{F}^{n}$ algebraic set.
We want to show there exists a unique $B \subseteq E^{n}$ s.t. $B \cap \bar{F}^{n}=A$.
Proof: Let $\operatorname{Zer}_{E}, \operatorname{Zer}_{F}$ be the zero set function in E and F respectively. Define $B=\operatorname{Zer}_{E}(\operatorname{Pol}(A))$.
$B \cap \bar{F}^{n}=\operatorname{Zer}_{\bar{F}}(\operatorname{Pol}(A))=A$.
It remains to show uniqueness. Suppose $C \subseteq F^{n}, C \cap \bar{F}^{n}=A$. Again using lemma:

$$
\begin{aligned}
& C=\operatorname{Zer}_{E}(\operatorname{Pol}(C)) \\
& A=C \cap \bar{F}^{n}=\operatorname{Zer}_{\bar{F}}(\operatorname{Pol}(C))
\end{aligned}
$$

Now, use the Nullstellensatz in \bar{F} :

$$
\operatorname{Pol}\left(\operatorname{Zer}_{\bar{F}}(I)\right)=\sqrt{I}
$$

Taking $I=\operatorname{Pol}(C)$ we then get:

$$
\sqrt{I}=\operatorname{Pol}\left(\operatorname{Zer}_{\bar{F}}(\operatorname{Pol}(C))\right)=\operatorname{Pol}(A)
$$

Again in E by the Nullstellensatz:

$$
I=\operatorname{Pol}(C)=\operatorname{Pol}\left(\operatorname{Zer}_{E}(I)\right)=\sqrt{I}
$$

So:

$$
\operatorname{Pol}(A)=\operatorname{Pol}(C)
$$

