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Chapter 1

Introduction

11/03/2014

In this course we will mainly talk about non-commutative rings.

The assignments will be 25% of the final grade while the take home exam will be 75%.

Books:

1. Jakobson: Basic Alg II

2. Algebra: A gram algebra course: I.M Isaac.

3. S.Lang - Algebra.
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Chapter 2

Modules

2.1 Definition

A module is an additive abelian group.

Definition 2.1.1 If R is a ring (we will always talk about rings with identity), M is a module over R or a left

R-module if M is an additive abelian group and we have a map:
R×M →M
(a, x) 7→ a · x while a ∈ R and x ∈ M that

satisfies the following:

1. a (x+ y) = ax+ ay ∀a ∈ R, ∀x, y ∈M

2. (a+ b)x = ax+ bx ∀a, b ∈ R, ∀x ∈M

3. (a · b)x = a (b · x) ∀a, b ∈ R, ∀x ∈M

4. 1R · x = x ∀x ∈M

This definition seems very similar to a vector space, only instead of a field we have a ring, and that will be our first
example:

PExample 2.1.2 () M = VF = Vector space over a field F . R = F .
The operation of F on V is multiplication by scalars.

Just as we have left R-module we can have also a right R-module:

Definition 2.1.3 If R is a ring (always we are talking about a rings with identity), M is a right R-module if

M is an additive abelian group and we have a map:
M ×R →M
(x, a) 7→ x · a while a ∈ R and x ∈ M that satisfying the

following:

1. (x+ y) a = xa+ ya ∀a ∈ R, ∀x, y ∈M

2. x (a+ b) = xa+ xb ∀a, b ∈ R, ∀x ∈M

3. x (a · b) = (x · a) b ∀a, b ∈ R, ∀x ∈M

4. x · 1R = x ∀x ∈M

One, at first glance, would expect the definitions to be the same, but that will not be true for non-commutative
rings. For example the 3rd condition will have different results!

PExample 2.1.4 () M = VF = vector space over a field F , R = the ring of linear operators on V .
If ϕ ∈ R then ϕ (x+ y) = ϕ (x) + ϕ (y), we can write this as a multiplication: ϕ · (x+ y) = ϕ · x+ ϕ · y.
So M is a left module over R.
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2.2. HOMOMORPHISMS OF R-MODULES CHAPTER 2. MODULES

PExample 2.1.5 () If M is any additive abelian group, we can regard it as a Z-module by defining:
For n ∈ Z while n > 0 we define: n · x = x+ . . .+ x

︸ ︷︷ ︸

ntimes

and then we can define (−n) · x = − (nx) and 0 · x = 0.

2.2 Homomorphisms of R-modules

Definition 2.2.1 (left R-module homomorphism) If M and N are both left R-modules, ϕ :M → N is a left
R-module homomorphism if:

1. ∀x, y ∈M ϕ (x+ y) = ϕ (x) + ϕ (y) (ϕ is a module homomorphism).

2. ∀x ∈M,a ∈ R ϕ (ax) = aϕ (x).

PExample 2.2.2 () If V,W are vector spaces over F , then V,W are an F -modules, and ϕ is an F -module
homomorphism if and only if ϕ is a linear transformation.

Another way to look at the second condition is to say that the operations a and ϕ commute.

PExample 2.2.3 () If R is a ring then we can take M = R+ = 〈R,+, 0〉 (the additive group of R). Then, let
R act on itself through left multiplication then R is a left R-module over itself denoted by RR.
And also:
If R is a ring then we can take M = R+ = 〈R,+, 0〉 (the additive group of R). Then, let R act on itself through
right multiplication then R is a right R-module over itself denoted by RR.
This is called the regular R-module.

Special case: Division ring. A special case is when R is a division ring (A ring which every non-zero element
has an inverse). Modules over division rings are more or less like vector spaces. All theorems on vector spaces that
don’t depend on commutativity and special field properties will hold. e.g. every module over a division ring has a
basis (uses the axiom of choice). Also, we can define the notion of dimension.

The additive condition of homomorphism (the first) can be define for any group, not even a module. This will be
a group homomorphism.

Definition 2.2.4 If M is a module, we define EndM = {ϕ :M →M | ϕ (x+ y) = ϕ (x) + ϕ (y) ∀x, y ∈M}.

It’s easy to show that: EndM is an additive group, and in fact is a ring with respect to composition and the identity
map is the identity element of EndM .

PExample 2.2.5 () M is an EndM -module where ϕ · x is defined as ϕ (x).
We have ϕ (x+ y) = ϕ (x) + ϕ (y) so: ϕ (x+ y) = ϕx+ ϕy. We have: (ϕ+ ψ) = ϕx+ ψx (the addition in EndM).
(ϕψ) (x) = ϕ (ψx) and for last: Id (x) = x.

In some sense this is a general example as if M is a left R-module, each a ∈ R defines an endomorphism of R as:

a (x+ y) = ax+ ay

Get a map f : R → EndM , a ∈ R, f (a) =endomorphism that a induces on M . i.e. f (a) (x) = ax.

In fact f will be a ring homomorphism so f (R) is a subring of EndM .

Theorem 2.2.6

If R is a ring, then R is isomorphic to some ring of the form EndM for some module(=additive group) M .

Proof: Take M to be R+ = 〈R,+, 0〉. Define L : R → EndM to be left multiplication, i.e. L (a) = aL where
aL (x) = ax with a, x ∈ R.

Clearly L is additive and multiplicative as e.g: L (ab) = (ab)L and

(ab)L (x) = (ab) · x =
︸︷︷︸

associativity in R

a · (bx) = aL (bL (x))
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CHAPTER 2. MODULES 2.3. REPRESENTATIONS OF RINGS

L (1R) = Id in EndM so (ab)L = aL · bL (composition in EndM).

L is a 1 − 1 as if aL = bL then: a · 1 = aL (1) = bL (1) = b · 1 so a = b. R ∼= L (R) ⊆ EndM . Meaning that
R →֒ EndM .

Also, we call this image: RL.

Remarks 2.2.7 If S is a ring and we have operation form S to EndM (M = S+) defined by right multiplication:
a ∈ S, a 7→ aR where aR (x) = x · a.
Then: aR (x+ y) = (x+ y) · a = xa+ ya = aR (x) + aR (y) and (a+ b)R x = x (a+ b) = xa+ xb = aR (x) + bR (x).
This gives an antihomomorphism of rings from S → EndM as: (ab)R (x) = x (ab) = bRaR (x) so: (ab)R = bRaR
Meaning that antihomomorphism reverse the operation.

Definition 2.2.8 (Centralizer) In a ring S we define the centralizer of a subset A ⊆ S:

CentS (A) = {r ∈ S | ra = ar ∀a ∈ A}

Theorem 2.2.9

(Assignment 1)
SL = CentEndM (SR) and SR = CentEndM (SL).

Remarks 2.2.10 SL = {aL | a ∈ S} while SR = {aR | a ∈ S} (multiplication form the left and multiplication from
the right).

Definition 2.2.11 For a set A, SymA =the group of all permutations on the element of A.

2.3 Representations of rings

Definition 2.3.1 Given a module M and a ring R, a ring homomorphism η : R → EndM is called a representation
of R.

Given a left R-module M we saw already that the map a
η7→ aL is a ring homomorphism from R to EndM .

So any R-module gives rise to a representation η defined in this way.

Conversely, given any additive abelian group M and a representation η : R → EndM we can regard M as a left
R-module via the representation η by defining for a ∈ R, x ∈M :

a · x = η (a) (x)

Meaning R-module ⇐⇒ Representation of R.

In particular: RR = "The regular module" which is R regarded as a left module over itself by left multiplication

defines a representation we call the regular representation of R: ρ, a
ρ7→ aL for a ∈ R.

We defined a homomorphism of R-modules ϕ : M → N , so now, we can do this inside M . In particular we can
have an endomorphism ϕ :M →M of R-module M satisfying:

{

ϕ (x+ y) = ϕ (x) + ϕ (y)

ϕ (ax) = aϕ (x)

We call this set EndRM and clearly: EndRM ⊆ EndM .

In fact EndRM is a subring of EndM .

PExample 2.3.2 () V is a vector space over F i.e. an F -module EndFV= the ring of linear operators on V .

25/03/2014
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2.4. SUBMODULES CHAPTER 2. MODULES

2.4 Submodules

Definition 2.4.1 An R-submodule N ⊆M is an additive subgroup of N s.t. R ·N ⊆ N .

PExample 2.4.2 () Let V be a vector space over a field F . And let T ∈ EndFV (linear operator on the vector
space).
We can view V as an F [x]-module as follows:
f (x) ∈ F [x], v ∈ V :
So if f (x) =

∑
aix

i then:

f (x) · v = f (T ) (v) = a0v + a1Tv + a2T
2v + . . .+ anT

nv

What are the submodule of V ?
W is a subspace which is T -invariant ⇐⇒ W is a F [x]-submodule.

More concretely: If we take V = Q(3) and take T · v =





1 3 0
2 −1 0
0 0 7





︸ ︷︷ ︸

A

v. For instance it is easy to see that the

eigenspaces corresponding to A are T -invariant.
Take the char polynomial:

∣
∣
∣
∣
∣
∣

λ− 1 −3 0
−2 λ+ 1 0
0 0 λ− 7

∣
∣
∣
∣
∣
∣

= (λ− 7)
[(
λ2 − 1

)
− 6
]
= (λ− 7)

(
λ2 − 7

)

We have three eigenspaces, one corresponding to the eigenvalue 7 and two corresponding to ±
√
7. And so, the

submodules of V as an Q [π]
︸ ︷︷ ︸
∼=Q[π]

-module where π (the number) acts on v via the matrix A.

Remarks 2.4.3 If R is a ring, regarded as a left R-module. The Left ideals are the R-submodules.

2.4.1 Quotient modules

Definition 2.4.4 If N is a R-submodule of an R-module M , then we define M/N =quotient of M by N as additive
groups to be an R-module by defining for x ∈M , a ∈ R:

a (N + x) = N + a · x

Remarks 2.4.5 This is well-defined as if N+x = N+x′ then x−x′ ∈ N . So a (x− x′) ∈ N So: N+ax = N+ax′.

2.5 Isomorphism Theorems

We will start with 2 isomorphism theorems for R-modules.

Theorem 2.5.1

Let M be an R-module.

1. Let N1 and N2 be R-submodules of M . Then:

y1 +N2
ϕ7→ y1 +N1 ∩N2, y1 ∈ N1

Defines an isomorphism of: N1+N2/N2 onto N1/N1∩N2.

2. If P ⊆ N ⊆M R-submodules. Then N/P are R-submodules of M/P and (x+ P ) +N/P 7→ x+N for x ∈M is
an isomorphism: (M/P)/(N/P) onto M/N.
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CHAPTER 2. MODULES 2.6. ARTINIAN & NOETHERIAN MODULES

Remarks 2.5.2 The usual basic homomorphism theorem holds, i.e. if M,N are R-modules and ϕ : M → N an
R-homomorphism then kerϕ is an R-submodule and if ϕ is surjective then: M/kerϕ ∼= N .

Proof: The proofs are straight-forward, We will only show that 1 is well-defined.

Suppose y1, y
′
1 ∈ N1 if:

y1 +N2 = y′1 +N2

Then y1 − y′1 ∈ N2 but it is also an element of N1 so y1 − y′1 ∈ N1 ∩N2 and so: y1 +N1 ∩N2 = y′1 +N1 ∩N2.

Remarks 2.5.3 Any additive group A can be regarded as a Z-module. In that case the Z-submodule are simply
the subgroups of A .

2.6 Artinian & Noetherian modules

Definition 2.6.1 A module M is called Noetherian if it satisfies the “ascending chain condition” i.e. if every
ascending chain of submodules stabilizes. i.e. if:

M1 ⊆M2 ⊆M3 ⊆ . . .

inside M then:
∃k : Mk =Mk+1 =Mk+2 = . . .

Definition 2.6.2 A module M is called Artinian if it satisfies the “descending chain condition” i.e. if every
descending chain of submodules stabilizes. i.e. if:

M1 ⊇M2 ⊇M3 ⊇ . . .

inside M then:
∃k : Mk =Mk+1 =Mk+2 = . . .

Definition 2.6.3 A ring R is left-Noetherian if every ascending chain of left ideals stabilizes.

Definition 2.6.4 A ring R is left-Artinian if every ascending chain of left ideals stabilizes.

And of course we can talk about right-Noetherian and right-Artinian. The interesting part is that all these combi-
nation can happen, a ring can be left-Noetherian without being right-Noetherian.

PExample 2.6.5 () Z is Noetherian but not Artinian.
Note that:

Z ⊃ 2Z ⊃ 4Z ⊃ 8Z ⊃ . . .

Is an infinite descending chain.
On the other hand if we have increasing chain then:

I1 ⊆ I2 ⊆ I3 ⊆ . . . ⊆ Z

Then I =
∞⋃

j=1

Ij is an ideal in Z and so I = nZ for some n ∈ Z and so ∃k where n ∈ Ik so Ik = Ik+1 = . . . = I.

More generally we can say:

Claim 2.6.6

If R is a PID, then R is Noetherian.

Proof: The same proof as for Z.

11



2.6. ARTINIAN & NOETHERIAN MODULES CHAPTER 2. MODULES

PExample 2.6.7 () Let p be a fixed prime, Take a look at the following ring:

P =

{
m

pk
| m ∈ Z, k ∈ Z

}

This is a subring of Q (regarded as a Z-module) which is neither noetherian nor artinian!
Z ⊆ P , so:

Z ⊇ 2Z ⊇ 4Z ⊇ . . .

This is an infinite descending chain of Z-submodules in P .
But also, we can look at:

Z ⊆ 1

p
Z ⊆ 1

p2
Z ⊆ . . .

Is an infinite ascending chain.

Remarks 2.6.8 Any finite module will be both noetherian and artinian.

Remarks 2.6.9 A finite dimensional vector spaces over a field F is both noetherian and artinian as an F -module.

Remarks 2.6.10 A vector space of infinite dimensional over field F is neither noetherian nor artinian.

Theorem 2.6.11

IfN is a submodule of a moduleM . Then ifM is noetherian(/artinian) then so areN and M/N and any homomorphic
image of M .

We will prove for noetherian, for artinian the proof is the same. Proof: Clearly any chain of submodules of N is
also a chain for M -so property holds.

Now, suppose we have a chain of submodules of M/N:

P1 ⊆ P2 ⊆ P3 ⊆ . . . ⊆ M/N

By homomorphism theorems there are submodules N ⊆ Pi ⊆M s.t. Pi ⊆ Pi/N . Moreover:

P1 ⊆ P2 ⊆ P3 ⊆ . . .

So this chain stabilizes, so also Pi.

Theorem 2.6.12 (The converse)

If M is a module, and N is a submodule s.t. N and M/N both noetherian(/artinian) then so is M .

We will prove for noetherian, for artinian the proof is the same.

Proof: Suppose P1 ⊆ P2 ⊆ P3 ⊆ . . . an increasing chain of submodules in M then: N ∩ P1 ⊆ N ∩ P2 ⊆ . . . is an
increasing chain of submodules in N . and so it stabilizes so we have k such that:

N ∩ Pk = N ∩ Pk+1 = . . .

Now, we also know that: (N+P1)/N ⊆ (N+P2)/N ⊆ . . . is increasing chain of submodules in M/N and so stabilizes, so
we have l such that:

(N+Pl)/N = (N+Pl+1)/N = . . .

Let r = max {k, l}. From the isomorphism theorem:

(N+Pr)/N ∼= Pr/N∩Pr = Pr/N∩Pr+1

||
(N+Pr+1)/N ∼= Pr+1/N∩Pr+1

Hence:
Pr/N∩Pr+1

∼= Pr+1/N∩Pr+1⇒Pr=Pr+1

As required.

12



CHAPTER 2. MODULES 2.7. FREE MODULES

Theorem 2.6.13

If M and N are both noetherian(/artinian) then so is M +N .

Proof: We have:
M+N/N ∼= M/N∩M

quotient of M and so noetherian. N and M+N/N are noetherian, and that implies that M +N noetherian from the
previous theorem.

Definition 2.6.14 (Finitely generated) M is a finitely generated R-module if ∃x1, . . . , xn ∈M such that:

M = Rx1 +Rx2 + . . .+Rxn

Theorem 2.6.15

If R is left-noetherian then so is every finitely generated left R-module.

Proof: Let M = Rx1 + . . .+Rxn then each Rxi is homomorphic image of R as a left R-module: a ∈ R, a 7→ axi.

So M is a finite sum of noetherian modules, and thus noetherian.

Exercise: If R is noetherian and M is an R-module then M is noetherian ⇐⇒ every submodule of M is finitely
generated.

2.7 Free modules

Definition 2.7.1 Let M be an R-module, the set {eα}α∈I is a set of generators for M if every element of M can
be written in the form:

x =

k∑

i=1

aieαi
for some ai ∈ Rand αi, . . . , αk ∈ I

Definition 2.7.2 (Basis) If {eα}α∈I is a set of generators for an R-module M we say it is a basis for M if
∑
aieαi

= 0 for ai ∈ R, α1, . . . , αk ∈ I if and only if ai = 0 for all i.

Remarks 2.7.3 We say that a set with this property (without being a generator) is “independent”.

Definition 2.7.4 ((Lang)) M is a free R-module if it has a basis.

PExample 2.7.5 () Z/3Z ×Z is a non-free Z-module.

PExample 2.7.6 ()
∏

p prime

Z/pZ as a Z-module is not free.

01/04/2014
Recall the definition from last week:

Definition 2.7.7 M is a free R-module if it is a R-module and has a basis (over R), and then rankM =
cardinality of basis (not well-defined).

And recall that a basis is a set {eα}, and every element in M can be represented as
∑
aieαi

for ai ∈ R, and
∑
aieαi

= 0 ⇐⇒ ∀i ai = 0.

PExample 2.7.8 () Z is a free Z-module as {1} is a basis.
On the other hand, Z/3Z as a Z-module is not free. And so (Z/3Z)× any other module as a Z-module is not free.

Denote R(n) = {(a1, . . . , an) | ai ∈ R}, then R(n) is a free R-module, with basis: ei = (0, . . . , 1, . . . , 0).

13



2.8. UNIVERSAL PROPERTY CHAPTER 2. MODULES

Claim 2.7.9

If M is a free R-module of rank n then M ∼= R(n).

Proof: If {x1, . . . , xn} basis for M , map xi 7→ ei and extend to an isomorphism of R-modules.

Claim 2.7.10

Let M be any R-module. u1, . . . , un ∈ M then there exists a unique homomorphism from R(n) to M sending

ei
µ7→ ui.

This claim is equivalent to the definition we gave, this is the “universal property”. We say that F is a free if and
only if the above claim holds (where we replace F with R(n) and exists a set of elements).

Proof: Define µ (
∑
aiei) =

∑
aiui. This define an homomorphism, and it is unique from the independence.

Theorem 2.7.11

If R is commutative and R(m) ∼= R(n) then m = n.

Proof: Suppose wlog m < n and take 〈e1, . . . , en〉 and 〈f1, . . . , fm〉 two bases inside R(n) say.

∃bi,j ∈ R and ∃aj,i ∈ R s.t. fj =
n∑

i=1

aj,iei and ei =
m∑

j=1

bi,jfj . Construct two matrices n× n:

A =















a1,1 . . . a1,n
a2,1 . . . a2,n

...
. . .

...
am,1 . . . am,n

0 . . . 0
...

. . .
...

0 . . . 0















B =






b1,1 . . . b1,m 0 . . . 0
...

. . .
...

...
. . .

...
bn,1 . . . bn,m 0 . . . 0






We get:

fj =

n∑

i=1

aj,i

(
m∑

k=1

bi,kfk

)

⇒
n∑

i=1

aj,ibi,k = δj,k

ei =

m∑

j=1

bi,j

(
m∑

l=1

aj,lel

)

⇒
m∑

j=1

bi,jaj,l = δi,l

By the second equation we get that BA = I. It is easy to show that over a commutative ring this means that A,B
commute and that B is also a right inverse for A.

But A · B has n−m rows of zeroes. So we get a contradiction.

Remarks 2.7.12 If R is non-commutative you can have R(m) ∼= R(n) and m 6= n . If A′ = (ai,j)m×n and
B = (bi,j)n×m as in the previous construction. Get B′A′ = In×n and A′B′ = Im×m (ex. in Jacobson BAI page
169).

2.8 Universal property

Theorem 2.8.1

Let F be a free R-module with bases {xα}α∈I and M be any R module {yα}α∈I ⊆ M arbitrary elements. Then
there exists a unique homomorphism µ : F →M s.t. µ (xα) = yα.

14
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Corollary 2.8.2

Any two free R modules with bases of equal cardinality are isomorphic.

Proof: If {xα}α∈I is a basis for F , {x′α} a basis for F ′ then the map sending xα 7→ xα will be invertible and so an
isomorphism.

15
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Chapter 3

Tensor product

3.1 Balanced product

Definition 3.1.1 (Balanced product) For a ring R, let M = MR be a right R-module and N =R N be a left
R-module.
A balanced product of M and N is an additive abelian group P and map f : M × N → P such that ∀x, x′ ∈
M ∀y, y′ ∈ N :

1. f (x+ x′, y) = f (x, y) + f (x′, y).

2. f (x, y + y′) = f (x, y) + f (x, y′).

3. f (xr, y) = f (x, ry) ∀r ∈ R.

We denote this by (P, f).

PExample 3.1.2 () M = N = Z = P . And the map: f (x, y) = x · y.

PExample 3.1.3 () Let R be a ring, R(n) = {(a1, . . . , an) | ai ∈ R} as a left R-module (w.r.t coordinate-wise
multiplication on the left).

(m)R =












a1
...
am




 | ai ∈ R







is a right R-module.

Let P =Mm×n (R) as an additive group. And we define the map as:

f











a1
...
am




 , (b1, . . . , bn)




 =

︸︷︷︸

Matrix prod.






a1b1 a1b2 . . . a1bn
...

amb1 . . . . . . ambn






(P, f) is a balanced product.

3.1.1 Some claims

Claim 3.1.4

f (0, y) = 0 = f (x, 0).

Claim 3.1.5

f (−x, y) = −f (x, y) = f (x,−y).

17
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3.2 Tensor Product Definition

Definition 3.2.1 (Tensor product) A tensor product of MR (right R-module) and RN (left R-module) is a
balanced product. (M ⊗R N,⊗) (We denote P = M ⊗R N and f = ⊗) such that for any other balanced product
(P, f) of M and N there exists a unique homomorphism ϕ :M ⊗R N → P s.t.

∀x ∈M, ∀y ∈ N : ϕ (x⊗ y) = f (x, y)

Remarks 3.2.2 We are using the notation: ⊗ (x, y) = x⊗ y.

i.e. tensor product is a balanced product with a “universal property”:

M ×N P

M ⊗R N

f

∃!ϕ
⊗

Remarks 3.2.3 From uniqueness it follows that every element in M ⊗R N will be a finite sum of “pure tensors”
i.e. of the form:

n∑

i=1

xi ⊗ yi

3.3 Construction of a tensor product explicitly

Let F be a free additive group on set of generators M ×N (i.e. a set of formal finite sums
n∑

i=1

(xi, yi) where xi ∈M

and yi ∈ N ).

Look at the subgroup G in F generated by the following set of elements ∀x ∈M, y ∈ N, r ∈ R:

(1) (x+ x′, y)− (x, y)− (x′, y)

(2) (x, y + y′)− (x, y)− (x, y′)

(3) (xr, y)− (x, ry)

Define M ⊗R N = F/G, x⊗ y = (x, y) +G.

Clearly, (M ⊗R N,⊗) is a balanced product by definition of G . Now we show it satisfies the universal property:

Let (P, f) be a balanced product of M and N . As F is a free group, there is a unique homomorphism of groups
ψ : F → P s.t. ψ (x, y) = f (x, y) where x ∈M and y ∈ N .

Let kerψ = K. For (x, y) , (x′, y) ∈M ×N we have:

ψ (x+ x′, y)− ψ (x, y)− ψ (x′, y) = f (x+ x′, y)− f (x, y)− f (x′, y) =
︸︷︷︸

f is a balanced product

0

So:

ψ [(x+ x′, y)− (x, y)− (x′, y)] = 0

Meaning all the elements of type (1) are in kerψ. Similarly all the elements of type (2) and (3) are in kerψ. So
kerψ contains all the generators of G and so G ⊆ kerψ. So ψ induces a homomorphism ϕ from M ⊗R N = F/G to
P .

ϕ (x⊗ y) = ϕ ((x, y) +G) = ψ (x, y) = f (x, y)

Since G ⊆ kerψ this is a well-defined homomorphism. And can show it is unique.

18
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3.4 Examples

PExample 3.4.1 () (m)R⊗R R
(n) ∼=Mm,n (R).

PExample 3.4.2 () If V and W are vector spaces over a field F with bases {vα}, {wβ} respectively then

V ⊗F W is the vector space with basis

{

vα ⊗ wβ | vα ∈ basis for V
wβ ∈ basis for W

}

In particular, if dimV, dimW <∞ then:

dimV ⊗F W = dimV · dimW

PExample 3.4.3 () If M is an additive group, we can regard M as a Z-module.
We can construct a tensor product:Q⊗ZM . This is an additive group and we can regard it as a Q-module i.e. for
r, s ∈ Q s (r ⊗ x) =

︸︷︷︸

def.

sr ⊗ x , Q⊗Z M is a vector space over Q.

M →֒ Q⊗Z M , x 7→ 1⊗ x.
In general, if R ⊆ S subring, and M is an R-module, extend M to an S-module by: S ⊗R M = M ′ and define
s1 (s2 ⊗ x) = s1s2 ⊗ x.

08/04/2014

19



3.4. EXAMPLES CHAPTER 3. TENSOR PRODUCT

20



Chapter 4

Group theory theorems with R-modules

analogues

4.1 Normal Series

Definition 4.1.1 (Normal series) A normal series for a group G is a chain:

1 = Gs+1 ⊳ Gs ⊳ . . . ⊳ G1 = G

Gi+1 ⊳ Gi ∀i

Definition 4.1.2 Two series are equivalent if can permute indices to give isomorphic quotients. i.e. Given also
1 = Ht+1 ⊳ Ht ⊳ . . . ⊳ H1 = G. Then the 2 series equivalent if t = s and we have correspondence i 7→ i′ s.t.
Gi/Gi+1

∼= Hi′/Hi′+1.

PExample 4.1.3 () For example:

1 ⊳ C3 ⊳ C3 × C5 ⊳ C3 × C5 × C7

1 ⊳ C5 ⊳ C5 × C7 ⊳ C3 × C5 × C7

Look at the quotients:

1 ⊳ C3 ⊳ C3 × C5 ⊳ C3 × C5 × C7 C3, C5, C7

1 ⊳ C5 ⊳ C5 × C7 ⊳ C3 × C5 × C7 C5, C7, C3

It’s clear these two are not the same series, but they are equivalent by our definition.

Definition 4.1.4 (Refinement) A series {Gi} is refinement of a series {Hi} if {Gi} ⊇ {Hi} (i.e. {Hi} are
subsequences of {Gi}).

Definition 4.1.5 (Composition series) A composition series is normal series which has no nontrivial refine-
ments.

PExample 4.1.6 () Both of the series:

1 ⊳ C3 ⊳ C3 × C5 ⊳ C3 × C5 × C7

1 ⊳ C5 ⊳ C5 × C7 ⊳ C3 × C5 × C7

Are composition series, but equivalent.

In modules we can define:

21
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Definition 4.1.7 A series of an R-module M is a chain of R-modules s.t.

1 =Ms+1 ⊳Ms ⊳ . . . ⊳M1 =M

4.1.1 Schreier Refinement theorem

Theorem 4.1.8 (Schreier Refinement theorem)

Any two normal series for a finite group have equivalent refinements.
Any two series of R-submodules have equivalent refinements.

Remarks 4.1.9 If N ⊳ G and H ≤ G a subgroup, then N ·H = H ·N is a subgroup as well.

Lemma 4.1.10 (Zassenhaus’ Lemma (Butterfly Lemma))

Let G1, G2 be subgroups of a group G, And let Hi ⊳ Gi for i = 1, 2. Then:

H1 (G1 ∩H2) ⊳ H1 (G1 ∩G2)

(H1 ∩G2)H2 ⊳ (G1 ∩G2)H2

And we have:
H1(G1∩G2)/H1(G1∩H2)

∼= (G1∩G2)H2/(H1∩G2)H2

G1 G2

H1(G1 ∩G2) H2(G1 ∩G2)

G1 ∩G2

H1(G1 ∩H2) H2(H1 ∩G2)

(H1 ∩G2)(G1 ∩H2)

H1 H2

H1 ∩G2 G1 ∩H2

Proof: Note that every coset of H1 (G1 ∩H2) in H1 (G1 ∩G2) can be represented by an element of G1 ∩G2, as if
xy ∈ H1 (G1 ∩G2) with x ∈ H1 and y ∈ G1 ∩G2 then:

xyH1 (G1 ∩H2) =
︸︷︷︸

normality

xH1y (G1 ∩H2) = H1y (G1 ∩H2) =
︸︷︷︸

normality

yH1 (G1 ∩H2)

Similarly, any coset (H1 ∩G2)H2 in (G1 ∩G2)H2 can be represented by an element in G1 ∩G2 so for y ∈ G1 ∩G2.
Map: y ·H1 (G1 ∩G2) 7→ y (H1 ∩G2)H2 and verify this is an isomorphism.

Proof of Schreier Refinement Theorem:

Proof: Given two normal series of finite length:

1 = Gs+1 ⊳ Gs ⊳ . . . ⊳ G1 = G

1 = Ht+1 ⊳ Ht ⊳ . . . ⊳ H1 = G

22
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We show these series have equivalent refinements.

Denote Gik = Gi+1 (Gi ∩Hk) and Hki
= (Hk ∩Gi)Hk+1 where 1 ≤ k ≤ t + 1 and 1 ≤ i ≤ s + 1. By Zassenhaus

we have that: Gik+1
⊳ Gik and Hki+1 ⊳ Gki

and: Gik/Gik+1
∼= Hki/Hki+1

.

Gi1 = Gi+1



Gi ∩
G
︷︸︸︷

H1



 = Gi+1Gi = Gi

Hk1 = Hk

Git+1 = Gi+1



Gi ∩
1

︷ ︸︸ ︷

Ht+1



 = Gi+1

We now get two normal series of length s · t:

G = G1
︸︷︷︸

G1

⊲ G12 ⊲ . . . ⊲ G1t+1 = G2
︸︷︷︸

G21

⊲ G22 ⊲ . . . ⊲ Gst+1 = 1

H = H1
︸︷︷︸

H11

⊲ . . .

These will be equivalent because of the isomorphisms of Gik/Gik+1
∼= Hki/Hki+1

with (ik)
′
= ki.

PExample 4.1.11 ()

1 ⊳ Z/3Z ⊳ Z/6Z

1 ⊳ Z/2Z ⊳ Z/6Z

PExample 4.1.12 () Z has no composition series as a Z-module.

quotient of order 3Z ⊃ 3Z ⊃ 9Z ⊃ . . .

quotient of order 5Z ⊃ 5Z ⊃ 25Z ⊃ . . .

Two infinite series which do not have equivalent refinements. Each quotient is of prime order.

PExample 4.1.13 () 1 ⊳ 〈(1 2) (3 4)〉 ⊳ V4 ⊳ A4 ⊳ S4. Composition series (V4 is Klein 4 group).

4.2 Jordan Holder Theorem

An immediate consequence of the Schreier Refinement Theorem is the Jordan Holder theorem:

Theorem 4.2.1

Any two composition series for a group/R-module are equivalent.

Proof: User Schreier refinement theorem (and throw out trivial quotients).

Definition 4.2.2 (Irreducible module) An R-moduleM(groupG) is irreducible (simple) if it has no nontrivial
submodules (normal subgroups).

Remarks 4.2.3 In a composition series, all quotients will be irreducible.

Theorem 4.2.4

A module M 6= 0 has a composition series ⇐⇒ it is both noetherian and artinian.
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Proof: Suppose M ha a composition series:

M =M1 ⊃M2 ⊃ . . . ⊃Ms+1 = 0

And suppose an arbitrary series of submodules:

M = N1 ⊃ N2 ⊃ . . . ⊃ Nt ⊃ . . .

Look at the sequence that ends with a 0:

M = N1 ⊃ N2 ⊃ . . . ⊃ Nt ⊃ 0

Then, this has a refinement equivalent to our composition series. So t ≤ s.

Similarly, every increasing sequence has length ≤ s. Thus M is both artinian and noetherian.

Now we want to show the other direction. Assume M is noetherian and artinian. M = M1 has a proper maximal
submodule M2 (otherwise we have an infinite increasing chain). M2 is also noetherian so has a maximal submodule
M3. Get descending chain:

M =M1 ⊃M2 ⊃M3 ⊃ . . .

Which must be of finite length as M also artinian. So we got a composition series.

4.3 Krull-Schmidt Theorem

Definition 4.3.1 (Indecomposable module) M is indecomposable if it has no nontrivial submodules M1,M2

s.t. M =M1 ⊕M2.

Remarks 4.3.2 Clearly irreducible→indecomposable. But not the other way around.

PExample 4.3.3 () Z is not irreducible as a Z-module. But note that it cannot be that Z = M1
︸︷︷︸

nZ

⊕ M2
︸︷︷︸

mZ

because nZ ∩mZ 6= 0 (unless n or m = 0).

Note:

Given R-modules M1, . . . ,Mr we can construct M1 × . . .×Mk =M with coordinate-wise operations

Get R-homomorphisms: ij :Mj → M the natural injections and pj :M →Mj the natural projections.

ej = ijpj :M →M . ej ∈ EndM :
e2j = ij (pjij)

︸ ︷︷ ︸

1Mj

pj = ej

So ej is idempotent.

If j 6= k then:
ejek = ij (pjik)

︸ ︷︷ ︸

0

pk = 0

So e1, . . . , ek are orthogonal idempotents. And: e1 + . . .+ ek = 1M . Denote ej (M) =M ′
j
∼=Mj.

If x ∈M then:
x = 1Mx = e1x

︸︷︷︸

∈M ′

1

+ . . .+ ekx
︸︷︷︸

∈M ′

k

So M is a direct sum of submodules M ′
1, . . . ,M

′
k. M =M ′

1 ⊕ . . .⊕M ′
k as we have:

M ′
k ∩




⊕

j 6=k

M ′
j



 = 0
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Conversely, given M =M1 ⊕ . . .⊕Mk where Mi are submodules. Can define injection and projections:

ij :Mi → M

pj :M → Mi

s.t. ej ∈ EndM idempotents, orthogonal and e1 + . . .+ ek = 1M .

Conclude: M 6= 0 is indecomposable ⇐⇒ EndM does not contain a non-trivial idempotent (i.e. 6= 0, 1)

Proof: Clearly showed that if M =nontrivial direct sum, then EndM has nontrivial idempotents. M =M1 ⊕M2.
e1 + e2 = 1M and e1 (M1) =M2 and e2 (M2) =M2.

Now, assume e ∈ EndM , nontrivial idempotent. Define e (M) =M1, (1− e)M =M2 and get M1 ⊕M2 =M .

e1e2 = e (1− e) = e− e2 = 0

M2,M1 6= 0 as if M1 = 0 then e = 0 contradiction.

And if M2 = 0 then 1M − e = 0 giving e = 1M contradiction.

Remarks 4.3.4 EndZ ∼= Z contains no nontrivial idempotents.

29/04/2014

4.4 Indecomposable

Remarks 4.4.1 Decomposition to direct sum of finite number of indecomposable is generally not unique.
e.g.

R3 = span











1
0
0










⊕ span











0
1
0










⊕ span











0
0
1











but also:

R3 = span











1
1
0










⊕ span











0
1
0










⊕ span











0
0
1











But here we do have isomorphisms between components.

We shall need a string condition on EndM we get uniquness up to isomorphisms of decompositions.

Recall that:

Definition 4.4.2 A ring R is local if the set of non-units is an ideal.

PExample 4.4.3 () M2 (Q) is not local as:

(
1 0
0 0

)

+

(
0 0
0 1

)

=

(
1 0
0 1

)

but:
S =

{m

n
| m,n ∈ Z, n 6= 0, 2 ∤ n

}

is local. 2S =set of non-units and is an ideal.

Remarks 4.4.4 Local rings do not contain idempotents 6= 0, 1.

Definition 4.4.5 (Strongly indecomposable) M is strongly indecomposable if EndM is local.

Theorem 4.4.6

If M has 2 decomposable N1⊕ . . .⊕Nl =M =M1⊕ . . .⊕Mk where Ni are indecomposable and the Mi are strongly
indecomposable, then k = l and there exists a permutation j 7→ j′ s.t. Mj

∼= Nj .
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PExample 4.4.7 () Z is indecomposable but not strongly indecomposable as EndZ ∼= Z not local.

Lemma 4.4.8

Suppose M,N modules, f :M → N homomorphism. M 6= 0, N is indecomposable, g : N →M homomorphism s.t.
gf automorphism (of M), then f and g are isomorphisms.

Proof: Suppose k inverse of gf so kgf = 1M .

Let l = kg : N →M , lf = 1M so f is left invertible.

Look at fl = e, e2 = flf l = f (lf) l = fl = e, so e is idempotent. As N is indecomposable, it must have e = 0 or

e = 1. Now lf = 1M so we cant have e = 0 because then: 1M = (lf)2 = lf lf = l (fl)
︸︷︷︸

6=0

f . So e 6= 0 so e = 1 and f is

also right invertible (l is its right inverse) and so an isomorphism. Now g = k−1f−1 so g also an isomorphism.

Now we want to prove the theorem: Proof: By induction on k.

k = 1 then M =M1 indecomposable so l = 1 and N1
∼=M1.

Now assume for any m < k and prove for k.

Define projections: ej :M →Mj for 1 ≤ j ≤ k and fj :M → Nj for 1 ≤ j ≤ l.

Look at: hj = fje1 :M → Nj and kj = e1fj :M →M1, then

l∑

j=1

kjhj =
∑

e1fjfje1 = e1






∑

f2
j

︸︷︷︸

fj




 e1 = e11Me1 = e1

Restricting e1 to M1: e1 |M1= e′1, kj |N1= k′j , hj |M1= h′j .

So
∑
k′jh

′
j = e′1 and e′1 = 1M1 and M1 is strongly indecomposable. EndM1 is local, so we cannot have everyone of

the k′jh
′
j non-units. So ∃j s.t. k′jh

′
j is automorphism of M1.

Now, use the lemma, WLOG suppose j = 1, h′1, k
′
1 must be isomorphisms. h′1 :M1 → N1 so M1

∼= N1.

Remarks 4.4.9 Note: we are not done yet, as we can have M1
∼= N1 but M/M1 6∼= M/N1 . e.g. M is infinite

dimensional vector space with basis {xi}∞i=1 and span {x2, x3, . . .}
︸ ︷︷ ︸

M1

∼= span {x3, x4, . . .}
︸ ︷︷ ︸

N1

.

Claim 4.4.10

M = N1 ⊕M2 ⊕ . . .⊕Mk .

First show N1 ∩ (M2 ⊕ . . .⊕Mk) = 0, Let x ∈ N1 ∩ (M2 ⊕ . . .⊕Mk), e1 (x) = 0 as x ∈M2 ⊕ . . .⊕Mk. f1 (x) = x
as x ∈ N1. k1 (x) = e1f1 (x) = 0, but k′1 is an isomorphism from N1 to M1, so this implies x = 0.

It remains to show that M1 ⊆ N1 ⊕M2 ⊕ . . .⊕Mk = M ′. Let x ∈M1, note that e1 (N1) = e1f1 (N1) = k1 (N1) =
k′ (N1) =M1, so there exists y ∈ N1 s.t. x = e1 (y) hence:

k∑

i=1

ei (y) = y

So we get:

x = e1 (y) = y −
k∑

i=2

ei (y) ∈M ′

So now we do have:

N2 ⊕ . . .⊕Nl
∼= M/N1

∼=M2 ⊕ . . .⊕Mk

And get our result by induction.
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4.5 Fitting’s Lemma

Lemma 4.5.1 (Fitting’s Lemma)

Let M be both artinian and noetherian, and f ∈ EndRM . Then M = f∞ (M)⊕ f−∞ (0) where

f∞ (M) = ∩∞
n=0f

n (M)

f−∞ (0) =

∞⋃

n=1

ker fn

And f |f∞(M) is an automorphism and f |f−∞(0) is nilpotent.

Proof:

M ⊇ f (M) ⊇ f2 (M) ⊇ . . .

0 ⊆ ker f ⊆ ker f2 ⊆ . . .

Since M is artinian and noetherian, both chains stabilize. So ∃r s.t. f r (M) = f r+1 (M) = . . . = f∞ (M),
ker f r (M) = ker f r+1 (M) = . . . = f−∞ (0).

Suppose z ∈ ker f r (M) ∩ f r (M). Then, ∃y ∈M s.t. z = f r (y) and f r (z) = 0 giving f2r (y) = 0 so y ∈ ker f2r =
ker f r hence z = f r (y) = 0.

Now, take x ∈M , we show that x ∈ f∞ (M)⊕ f−∞ (0).

f r (x) ∈ f r (M) = f2r (M)

so ∃y ∈M : f r (x) = f2r (y). So f r (x− f r (y)) = 0. So x− f r (y) ∈ ker f r.

x ∈ ker f r

︸ ︷︷ ︸

f−∞(0)

⊕ f r (M)
︸ ︷︷ ︸

f∞(M)

We now show f |f−∞(0) is nilpotent.

For all x ∈ f−∞ (0) = ker f r, f r (x) = 0 so
(
f |f−∞(0)

)r
= 0.

We show f |f∞(M) is an automorphism:

f∞ (M) = f r (M) = f r+1 (M)

So f |f∞(M) is surjective.

Suppose x ∈ f∞ (M) and f (x) = 0 so x ∈ ker f ⊆ f−∞ (0) so x = 0. So f |f∞)M is injective and surjective.

PExample 4.5.2 () Counterexample:
Let V be an infinite dimensional vector space over a field, {xi}∞i=1 basis. So V neither artinian nor noetherian.

f is a linear operator that project onto span {x1}. i.e. if x =
∑k

i=1 cixi then f (x) = c1x1.

g is the linear operator g (x) =
∑k

i=1 cixi+1.
Let T = f + g. What is its kernel?

If T (x) = 0 then f (x) + g (x) = 0. If x as above T (x) = c1x1 +
k∑

i=1

cixi+1 = c1 (x1 + x2) + c2x3 + . . .+ ckxk+1

implies ci = 0 for all i so x = 0 and kerT = 0 → T−∞ (0) = 0 .
But note that:

T (V ) = span {x1 + x2, x3, x4, . . .}
T 2 (x) = T (c1 (x1 + x2) + c2x3 + . . .) = c1x1 + c1x2 + c1x3 + c2c4 + . . .

T 2 (V ) = span {x1 + x2 + x3, x4, x5, . . .}
∞⋂

n=1

T n (V ) = 0
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Remarks 4.5.3 Applying Fitting’s lemma to a finite dimensional vector space and operator T we get some r s.t.
V = T r (V )⊕ kerT r (both of them are T invariant subspaces).
In particular, if T = A− λI where A is a matrix and λ an eigenvalue, then kerT r is the generalized eigenspace for
λ.
We can decompose the T r (V ) subspace w.r.t. A− µI where µ is another eigenvalue.
Continue decompose V to generalized eigenspaces of A and get the Jordan decomposition of the matrix A.

Corollary 4.5.4

Let M be indecomposable, artinian and noetherian. Then every endomorphism of M is either nilpotent or an
isomorphism - in fact M is strongly indecomposable.

Proof: Let f ∈ EndM .

By Fitting’s lemma M = f∞ (M) ⊕ f−∞ (0), but M is indecomposable, so one of these submodules is 0 and
M = f∞ (M) and f is automorphism or M = f−∞ (0) and f is nilpotent.

It remains to show that EndM is local.

The set of non-units = set of all nilpotent endomorphisms.

Remarks 4.5.5 If f is nilpotent, f 6= 0, then ∃r ≥ 2 f r = 0 and f r−1 6= 0 so f cannot be invertible.

Remarks 4.5.6 In a commutative ring we have f, g nilpotent, taking k large enough (f + g)
k
= 0 as we get linear

combinations fk−lgl.

Corollary 4.5.7

Let M be an indecomposable module that is both artinian and noetherian. Then every endomorphism of M is
either an automorphism or nilpotent and in fact EndM is local, i.e. M is strongly indecomposable.

Proof: We showed that every endomorphism is nilpotent or an automorphism. It remains to show that the set of
nonunits in EndM is an ideal. I = {f ∈ EndM | f is nilpotent}.
Let f ∈ I, g ∈ EndM then g ◦ f and f ◦ g are not invertible. As if f 6= 0, fk = 0 and fk−1 6= 0 then (gf) fk−1=0,
fk−1 (fg) = 0.

So if say gf is invertible and h is inverse, we would have h (gf)
︸ ︷︷ ︸

1

fk−1 = fk−1 = 0 contradiction.

Suppose that f1, f2 ∈ I, f1 + f2 /∈ I so f1 + f2 automorphism. So we have g ∈ EndM such that g (f1 + f2) =
(f1 + f2) g = 1.

Let hi = fig. so hi ∈ I and so it is nilpotent, thus exists k s.t. hki = 0. we then have (1− hi)
︸ ︷︷ ︸

invertible

(
1 + hi + h2i + . . .+ hk−1

i

)
=

1. But h1 + h2 = 1 so h2 is invertible. Contradiction.

Theorem 4.5.8

If M 6= 0 is both artinian and noetherian then M contains indecomposable submodules Mi s.t. M =M1⊕ . . .⊕Mn.

Proof: As M is artinian and noetherian, it has a composition series. By Jordan-Holder, any two composition series
are equivalent and so the length is well-defined.

We prove the theorem by induction on the length ℓ (M) of a composition series.

If ℓ (M) = 1 then M is irreducible and so indecomposable.

Now assume ℓ (M) > 1. if M is indecomposable we are done.

So now assume M not indecomposable. So M = N1 ⊕N2. N1, N2 6= 0. We claim ℓ (Ni) < ℓ (M) as if we form the
chain 0 ⊂ Ni ⊂M which can be refined to a composition series giving ℓ (Ni) < ℓ (M).

So now, using induction hypothesis on N1, N2 we get that M is direct sum of indecomposable.

We got:
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Theorem 4.5.9 (Krull-Schmidt Theorem)

Let M 6= 0 be both artinian and noetherian and suppose N1 ⊕N2 ⊕ . . .⊕Nl =M =M1 ⊕ . . .⊕Mk then k = l and
we have permutation i→ i′ s.t. Mi

∼= Ni′ .

Wedderburn - 1909 proved for finite groups with a gap, and Remak in 1911 filled the gap.

Krull in 1925 proved for abelian groups with operators, modules over rings, and Schmidt in 1928 proved for arbitrary
groups.

4.6 Completely Reducible Modules

Theorem 4.6.1

The following are equivalent:

1. M is an irreducible right R-module.

2. M 6= 0 and M is generated by any x 6= 0 as a right R-module.

3. M ∼= R/I with I max right ideal in R.

Proof: 1 ⇒ 2: clearly if x 6= 0, xR= right R-submodule. So if x 6= 0 must have xR =M .

2 ⇒ 3: Take x ∈ M , x 6= 0 and the map a
ϕ7→ xa module homomorphism R → M . Imϕ = M as xR = M ,

I = kerϕ= right ideal and it is maximal. As otherwise would have b ∈ R, I ′ := bR + I ( R. But then I′

/I would
correspond to a submodule N in M , N := ϕ (I ′) , N ∼= I′

/I so would have y ∈ N in submodule but yR = M by
condition 2.

3 ⇒ 1: If I is maximal, clearly R/I must be irreducible as if it had a submodule N 6= 0, M would have corresponding
right ideal I ′ :0 ⊂ I ⊂ I ′ ⊂ R and I′

/I ∼= N .

4.6.1 Schur’s Lemma

Theorem 4.6.2 (Schur’s Lemma)

Let M,N be irreducible module. f ∈ HomR (M,N), then either f ≡ 0 or f isomorphism. In particular: if M ∼= N ,
EndR (M)
︸ ︷︷ ︸

∼=HomR(M,N)

= division ring and if M ∼= N , HomR (M,N) = 0.

Proof: Take f 6= 0 in Hom(M,N). ker f is a submodule of M , ker f 6= M as f 6= 0, M is irreducible so get
ker f = {0}. Imf is a submodule of N , f 6= 0 so Imf 6= 0. N is irreducible so we get Imf = N so f is an
isomorphism as required.

PExample 4.6.3 () V is a finite dimensional vector space over a field F . R = EndF (V ) ∼=Mn (F ).
EndR (V ) = set of all linear operators that commute with every other linear operator = center of Mn (F ) (= set of
scalar matrices ∼= F ).
V is an irreducible R-module as given any 0 6= v ∈ V and w ∈ V then exists ϕ ∈ EndF (V ) s.t. ϕ (v) = w so
Rv = V . So by Schur’s Lemma, EndR (V )= a division ring = center of Mn (F ) so commutative, so it is a field.

Definition 4.6.4 Suppose {Mα}α∈A is a set of submodules of a module M . Denote by
∑

α∈A

Mα = set of all elements

of the form xα1 + . . .+xαk
. αi ∈ A, xαi

∈Mαi
, i.e. finite sums of elements in the Mα, so

∑

α∈A

Mα will be submodule

of M.

Definition 4.6.5 S is independent set of submodules if Mα ∩









∑

β ∈ A
β 6= α

Mβ









= 0 for all α ∈ A.
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PExample 4.6.6 () {xα}α∈A is independent set of elements iff {Rxα}α∈A are an independent set of submodules.

Claim 4.6.7

If S = {Mα}α∈A is dependent, then there exists a finite subset of S which is dependent.

Proof: We have α s.t. Mα ∩
(

∑

β 6=α

Mβ

)

6= 0 , so ∃xα ∈ Mα and xβi
∈ Mβi

, 1 ≤ i ≤ k s.t. xα = xβi
+ . . . + xβk

and then Mα ∩
(

k∑

i=1

Mβi

)

6= 0 so {Mα,Mβ1 , . . . ,Mβk
} is dependent set.

Claim 4.6.8

If T independent subset of S, then there exists T0, T ⊆ T0 ⊆ S, s.t. T0 is maximal independent containing T .

Proof: Using Zorn’s Lemma, look at the set B = {B ⊆ S | T ⊆ B and Bis independent} . B 6= ∅ as T ∈ B. Given
any chain in B: B ⊂ B′ ⊂ . . . the union B∗ will be in B, otherwise we would have B∗ dependent and so a finite
subset of B∗ would be dependent and contained in an element of the chain.

Thus by Zorn, B has maximal element.

Definition 4.6.9 (Direct sum) If M =
∑

α∈A

Mα, {Mα}α∈A independent, We say M is a direct sum of the Mα

and write M =
⊕

α∈A

Mα.

Definition 4.6.10 (Completely reducible) M is completely reducible if it is a direct sum of irreducible sub-
modules.

e.g. any irreducible module is completely reducible!

Lemma 4.6.11

Suppose {Mα}α∈A independent set of submodules of M and N submodule of M s.t. N ∩
(
∑

α∈A

Mα

)

= 0, then

{Mα}α∈A ∪ {N} is independent .

Proof: Suppose not, then we have β ∈ A and 0 6= xβ ∈Mβ s.t. xβ = y+xα1 + . . .+xαk
for some y ∈ N , xαi

∈Mαi
,

αi ∈ A.

Then y = xα1 + . . . + xαk
− xβ ∈ N ∩

(
∑k

i=1Mαi
+Mβ

)

= 0 so y = 0. giving xβ ∈
k∑

i=1

Mαi
contradiction to

independence.

Lemma 4.6.12

Suppose {Mα}α∈A independent set of irreducible submodules and M =
∑

α∈AMα (i.e. M completely reducible).
and let N ⊆M submodule.
Then there exists a subset B ⊂ A s.t. {N} ∪ {Mβ}β∈B is independent.

Proof: Assume first N = M - trivial. So now N 6= M . Define B =
{

B ⊆ A | {N ∪Mβ}β∈B is independent
}

.

B 6= ∅ as if M 6= N then we have α s.t. Mα 6⊂ N , in which case Mα ∩N = 0 as Mα ∩ N is a submodule of Mα

which is irreducible. So {N,Mα} independent and {α} ∈ B.

We will continue this next week....

Corollary 4.6.13

Taking N = 0 we get that if M =sum of irreducibles.
Then M= direct sum of the irreducibles.

30



CHAPTER 4. GROUP THEORY THEOREMS WITH R-MODULES ANALOGUES4.6. COMPLETELY REDUCIBLE MODULES

Corollary 4.6.14

If M is completely reducible then every submodule N of M has a direct complement (i.e. “the lattice of submodules
of M is fully complemented”).Turns out that the converse of this corollary is true as well.

PExample 4.6.15 () Let V be a vector space over a field F , we can write V =
∑

x∈V

Fx. Each Fx is a one

dimensional subspace, and so it is irreducible. By the first corollary, V is a direct sum of some of the Fx, i.e. V
has a basis.

Lemma 4.6.16

Suppose M is a module s.t. its lattice of submodules is fully complemented. Then so are L (N) and L
(
M
)

where

N is a submodule of M and M is homomorphic image of M .

Remarks 4.6.17 We define L (M) = {N | 0 ⊆ N ⊆M submodule}.

Proof: Let P ⊆ N be a submodule of N so it is also a submodule of M and so has a direct complement P ′.
M = P ⊕ P ′.

And then, P ′ ∩N is a direct complement for P inside N as:

N = (P ⊕ P ′) ∩N = (P ∩N)
︸ ︷︷ ︸

P

⊕ (P ′ ∩N)

Now let M = M/P with P submodule. Since P has a direct complement in M , P ′ i.e. P ′ ⊕P ∼=M . Then P ′ ∼=M.
By what we already have shown, L (P ′) is fully complemented, and so L

(
M
)
.

Lemma 4.6.18

Suppose M 6= 0, L (M) is fully complement. Then M contains irreducible submodules.

Remarks 4.6.19 Z has no irreducible submodules.

Proof: Let x 6= 0 be in M and look at N = {N | N submodule of Mand x /∈ N}. By Zorn, N contains maximal
elements. Let P be a maximal element in N .

Let K be a direct complement for P in M : K ⊕ P =M . We claim that K is irreducible.

Suppose K = K ′ ⊕ K ′′, we want to show that one of these has to be 0. Assume towards contradiction that
K ′,K ′′ 6= 0. P ( P ⊕K ′, so x ∈ P ⊕K ′. And P ( P ⊕K ′′ so x ∈ P ⊕K ′′. We can write p2 + k′′ = x = p1 + k′

for p1, p2 ∈ P and k′ ∈ K ′ and k′′ ∈ K ′′. Then:

p1 − p2
︸ ︷︷ ︸

∈P

= k′ − k′′
︸ ︷︷ ︸

∈K

⇒ p1 − p2 = 0 ⇒ k′ − k′′ = 0 ⇒ k′ = k′′ ⇒ k′ = 0 = k′′

Then we get x = p1 ∈ P , contradiction.

Theorem 4.6.20

The following are equivalent for a module M :

1. M =
∑
Mα where Mα irreducible.

2. M is completely reducible.

3. L (M) is fully complemented.

Proof: 1 ⇒ 2: by corollary 4.6.13.

2 ⇒ 3: by corollary 4.6.14.
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It remains to show 3 ⇒ 1: By lemma 4.6.18, M contains irreducible submodules. Let:

M ′ =
∑

N irreducible submodule of M

N

We claim that M ′ = M . Suppose M ′ ( M then M ′ has a direct complement 0 6= M ′′ s.t. M ′ ⊕M ′′ = M . By
lemma 4.6.16, L (M ′′) is fully complemented and so by lemma 4.6.18, M ′′ contains irreducible submodule P 6= 0.

But then P is also an irreducible submodule of M and so P ⊆M ′, contradiction (as the irreducible submodules of
M are in M ′).

Definition 4.6.21 Let M be module, N an irreducible module:

M (N) = homogeneous complement of Mdetermined by N

=
∑

N ′ ⊆M submodule
N ′ ∼= N

N ′

Remarks 4.6.22 If M is not submodule isomorphic to N then M (N) = 0.

Theorem 4.6.23

Let M =
⊕

α∈A

Mα, Mα irreducible submodules. Then:

1. For any N 6= 0 irreducible submodule of M we have:

M (N) =
∑

Mα s.t. Mα
∼=N

Mα

2. M =
⊕

N irreducible
N 6= 0

M (N) (sum runs over representative of all isomorphism types of irreducible modules).

And of converse if N 6∼= P then M (N) ∩M (P ) = 0.

Proof: M (N) ⊇ ⊕

Mα
∼=N

Mα is trivial.

It remains only to show M (N) ⊆ ⊕

Mα
∼=N

Mα.

Let N ′ be a submodule of M which is isomorphic to N . We need to show that N ′ ⊆ ⊕

Mα
∼=N

Mα.

As N ′ is irreducible it is generated by a single element N ′ = Rx. Since M =
⊕

α∈A

Mα , there exists α1, . . . , αk ∈ A

s.t. N ′ ⊂Mα1 ⊕ . . .⊕Mαk
.

Using projections πα determined by the direct sum decomposition of M we get:

N ′ ⊂ πα1 (N
′)⊕ πα2 (N

′)⊕ . . .⊕ παk
(N ′)

Since Mα is irreducible for any α, πα (N ′) submodule of Mα so equal to either 0 or Mα. In fact by Schur’s Lemma,
each παi

|N homomorphism from N ′ to Mαi
(both of which are irreducible) will be either 0 or an isomorphism.

Not all will be 0, as N ′ ⊂ πα1 (N
′)⊕ . . .⊕ παk

(N ′).

If N ′ ∼= N then N ′ ⊆sum of some of the Mαthat are isomorphic to N . As if Mαi
∼= N ′ (παi

|N ′

i
=isomorphism).

Then Mαi
∼= N ′ ∼= N . So N ′ is indeed contained in

⊕

Mα
∼=N

Mα.
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Chapter 5

Structure theory of rings

5.1 Structure theory

Any left R-module, M gives rise to a representation ρ : R → EndM by defining: ρ (a)x = a · x. Likewise, every
representation of R into additive group M determines an action of R on M turning it into an R-module.

ker ρ = {b ∈ R | b ·M = 0} = annRM 2-sided ideal in R.

Definition 5.1.1 ρ is a faithful representation if ker ρ = 0.
M is a faithful module if annRM = 0.

For any x ∈M define: annRx = {a ∈ R | ax = 0}. This is a left ideal in R.

Definition 5.1.2 A representation ρ is called irreducible if the corresponding module is irreducible.

Claim 5.1.3

annRM =
⋂

x∈M

annRx.

Claim 5.1.4

Rx ∼= R/annRx (as left R-module).

Definition 5.1.5

1. R is primitive if it has a faithful irreducible representation.

2. R is semi-primitive if for any a 6= 0 in R there exists an irreducible representation ρ s.t. ρ (a) 6= 0.

Clearly, primitive⇒ s semi-primitive.

Definition 5.1.6 R is a sub-direct product of rings {Rα}α∈A if R can be embedded in
∏

α
Rα. i : R →֒ ∏

α
Rα, s.t.

if pα is projection, pα :
∏

α∈R

Rα → Rα, then iα = pαi is surjective from R onto Rα.

PExample 5.1.7 () R is a sub-direct product of R with R, a ∈ R, a
i7→ (a, a) embeds R in R ×R.

p1 (a, b) = a.
p2 (a, b) = b.

PExample 5.1.8 () Z is a sub-direct product of fields {Z/pZ}p prime. i : Z → ∏

p prime

Z/pZ. i (n) =

(n ( mod p))p = pth coordinate.
Clearly if πp projection of

∏

p prime

(Z/pZ) onto Z/pZ. Then iπp= surjective.

33



5.1. STRUCTURE THEORY CHAPTER 5. STRUCTURE THEORY OF RINGS

Proposition 5.1.9

The following conditions on a ring are equivalent:

1. R is semi-primitive.

2. R has a faithful completely reducible representation/module.

3. R is a sub-direct product of primitive rings.

Proof: 1 ⇒ 2: For any a 6= 0 in R let Ma be an irreducible module s.t. a ·Ma 6= 0 (or equivalently ρMα
(a) 6= 0) .

Look at M =
⊕

a 6=0

Ma. By definition, it is a completely reducible. Let b ∈ R and assume b ·M = 0 then bMa = 0

for all a ∈ R but b ·Mb 6= 0 contradiction.

2 ⇒ 3:

Let M =
⊕

α
Mα, Mα irreducible and annRM = 0. Note that:

0 = annRM =
⋂

α

annRMα

Since Mα is irreducible. Let Rα = R/annRMα (the annRMα is a two sided ideal). We can regard Mα as in Rα-
module by defining: (a+ annRMα)x = ax for x ∈ Mα, a ∈ R. This is well-defined as if a + Rα = a′ + Rα then
a− a′ ∈ annRMα so that (a− a′)x = 0 ∀x ∈Mα and ax = a′x.

Mα is a faithful Rα-module, soRα is a primitive ring. i : R →∏

α
Rα, natural embedding: i (a)α = a+annRMα ∈ Rα.

i is 1-1 as
⋂

α
annRMα = 0 and iα = pα · i is surjection onto Rα, pα : iαRα → Rα.

3 ⇒ 1: Suppose i : R → ∏

α
Rα embedding, Rα is primitive and if pα projection of

∏

α
Rα onto Rα then pαi is

surjection.

For every α we have an irreducible faithful Rα-module: Mα. Suppose the representation associated with this is ρα.
Let a 6= 0 in R:

⋂

α

ker ραiα =
︸︷︷︸

ραis faithful, so ker ρα = 0

⋂

α

ker iα = 0

as if b ∈ ⋂
α
ker iα = 0 then iα (b) = 0 for all α, so pα (i (b)) = 0 for all α.

pα projection form
∏

α
Rα → Rα so pα (i (b)) = 0 for all α ⇐⇒ i (b) = 0 ⇐⇒ b = 0. ραiα : R → EndMα is a

representation of R.

Now let a 6= 0 in R then as
⋂

α
ker ραiα = 0, we must have some α s.t. a /∈ kerραiα so ραiα (a) 6= 0. So R is

semi-primitive.

An “internal” characterization of primitive and semi-primitive:

Definition 5.1.10 Let I be a left ideal of R, (I : R) = {b ∈ R | bR ⊆ I}.

Lemma 5.1.11

I ⊇ (I : R) and (I : R) is a two-sided ideal.

Proof: Suppose K ⊆ I, 2-sided ideal, then for any b ∈ K: bR ⊆ K ⊆ I so b ∈ (I : R). So (I : R) = the largest
2-sided ideal contained in I.

Now note that (I : R) is clearly additive, and it is multiplicative, hence it is a two-sided ideal.

Claim 5.1.12

If M ∼= R/I (isomorphism as left R-modules) then annRM = (I : R).

Proof: If b ∈ (I : R).
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Remarks 5.1.13 M can be regarded as an R-module by defining ax = a (r + I) = ar + I for r + I = x ∈M, r ∈
R, a ∈ R, we can show it is well-defined.

So bR ⊆ I, so b (r + I) = br
︸︷︷︸

∈I

+I = I. So bM = 0 and b ∈ annRM . Conversely if b ∈ annRM then for any r ∈ R,

br ∈ I and so bM = 0.

Claim 5.1.14

1. R is primitive if and only if R contains a maximal left ideal I containing no nonzero two-sided ideal.

2. R is semi-primitive if and only if R 6= 0 and
⋂

Imaximal left ideal

(I : R) = 0.

Proof:

1. If R is primitive we have an irreducible module M and annRM = 0. By previous claim R/I ∼= M for some
maximal left ideal in R. 0 = annRM = (I : M) and so I contains no nonzero two-sided ideal. Converse: read
from end to beginning.

2. Suppose R 6= 0 and
⋂

Imaximal left ideal in R

(I : R) = 0. For I a maximal left idea R/I would be an irreducible

R-module. We form the direct sum:
⊕

Imaximal left ideal

R/I = M . annRM =
⋂

Imaximal left ideal in R

annR (R/I) =
⋂

Imaximal left ideal in R

(I : R) = 0 by assumption. So, for any 0 6= a ∈ R we have some maximal left ideal I s.t.

a /∈ (I : R) and so a /∈ annR (R/I) so R is semi-primitive.
Conversely, if R is semi-primitive then for any a 6= 0 in R we have an irreducible module Ma s.t. a ·Ma 6= 0.
So we have a maximal left ideals Ia s.t. R/Ia ∼= Ma. Since aMa 6= 0 we must have that:

⋂

06=a∈R

annRMa = 0.
⋂

06=a∈R

annRMa =
⋂

06=a∈R

(Ia : R) = 0 but note that it is trivial that:
⋂

Imaximal left ideal

(I : R) ⊆ ⋂

06=a∈R

(Ia : R)

hence
⋂

Imaximal left ideal

(I : R) = 0.

Corollary 5.1.15

R is simple→R is primitive.

Remarks 5.1.16 Converse is not true - example later.

Corollary 5.1.17

If R is commutative:

1. R is primitive if an only if R is a field (if and only if R is simple).

2. R is semi-primitive if and only if R is a sub-direct product of fields.

PExample 5.1.18 () Z is a sub-direct product of Z/pZ, p is primitive. i : Z →֒ ∏

pprime

Z/pZ, so Z is a semi-

primitive ring.

5.2 Jacobson Radical

Definition 5.2.1 J (R) = Jacobson radical =
⋂

ρirreducible representation

ker ρ.

J (R) is a two-sided ideal of R (intersection of two-sided ideals).
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Definition 5.2.2 if P ⊳ R ideal in R we say it is a primitive ideal if R/P is primitive ring.

PExample 5.2.3 () If P is a maximal ideal then it is primitive.

Lemma 5.2.4

P ⊳ R is a primitive ideal if and only if P = (I : R) where I is some maximal left ideal in R.

Proof: If P = (I : R), I a maximal left ideal in R then M = R/I is irreducible R-module. annRM = (I : R) = P .
Regard M as an R/P -module by defining for x ∈M, a ∈ R:

(a+ P )x = ax

It is well-defined as if a+ P = a′ + P ⇒ (a− a′)
︸ ︷︷ ︸

∈P=annRM

x = 0 so ax = a′x. M is a faithful R/P module and irreducible.

So R/Y is a primitive ring.

Converse: Let P ⊳ R be a primitive ideal. So R/I is a primitive ring. So it has a faithful irreducible module M .
Regard M as an R-module by defining x ∈ M, a ∈ R ax = (a+ P )x. annRM = P as M is a faithful R/P -module
(as it’s an irreducible R/P -module).

M is an irreducible R-module, so corresponds to some maximal left ideal I s.t. R/I ∼= M . And then as before
P = annR (R/I) = (I : R).

Claim 5.2.5

1. J (R) =
⋂

Pprimitive ideal in R

P .

2. J (R) =
⋂

Imaximal left ideal of R

I.

Proof:

1. By defining:

J (R) =
⋂

ρirreducible representations

ker ρ

=
⋂

M irreducible R-modules

annRM

=
⋂

Imaxaimal left ideal

annR (R/I)

=
⋂

Imaxaimal left ideal

(I : R)

=
⋂

Pprimitive itdeal in R

P

2. Note that annRM =
⋂

06=x∈M

annRx (annRx = left ideal). J (R) =
⋂

M irreducible R-modules

annRM . If M is

irreducible and x ∈ M , x 6= 0 then annRx = maximal left ideal as map ϕ sending a ∈ R to ax has annRx =
kerϕ, ϕ is surjective and M ∼= R/annRx ( annRx = maximal left ideal). So:

J (R) =
⋂

M irreducible R-modules

annRM =
⋂

M irreducible R-modules




⋂

06=x∈M

annRx





But it’s clear that:
⋂

M irreducible R-modules




⋂

06=x∈M

annRx



 ⊇
⋂

Imaximal left ideal

I
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(because each annRx is a maximal left ideal). On the other hand, Left ideal I ⊇ (I : R) so:

⋂

Imaximal left ideal

I ⊇
⋂

Imaximal left ideal

(I : R) =
︸︷︷︸

previous lemma

⋂

Pprimitive

P

part 1
︷︸︸︷
= J (R)

PExample 5.2.6 () Z. I = max (left) ideal ⇐⇒ I = pZ with p prime.

⋂

Imaximal left ideal

I =
⋂

pprime

pZ = 0

So J (Z) = 0.

10/06/2014

Theorem 5.2.7

1. R is semi-primitive if and only if J (R) = 0 (follows from the fact thatR is semi-primitive ⇐⇒ ⋂

Imaximal left ideal (I : R).

2. If R 6= 0, R/J is semi-primitive (i.e. J (R/J) = 0) and if B is an ideal s.t. R/B is semi-primitive then B ⊇ J .

Proof:

1.

2. Given any ideal B ⊳R, R = R/B. Every ideal P ⊳R correspond to an ideal P of R s.t. P ⊇ B and R/P ∼= R/P .
If P is primitive ideal then we have R/P primitive ⇐⇒ R/P primitive ⇐⇒ P primitive in R.
Now, suppose that R/B is semi-primitive. So

J (R/B) = 0 ⇒
⋂

Pprimitive in R/B

P = 0 ⇒
⋂

Pprimitive in R
P ⊇ B

P/B = 0 ⇒ ⋂

Pprimitive in R
P ⊇ B

P/B = 0

So we get
⋂

Pprimitive in R
P ⊇ B

P = B so B ⊇ J =
⋂

Pprimitive in R
P ⊇ B

R.

Now look at R̃ = R/J , by previous calculation:

J
(

R̃
)

=
⋂

P̃primitive in R̃

P̃ =
⋂

Pprimitive in R
P ⊇ J

P/J =
︸︷︷︸

every primitive ideal ⊇ J

⋂

Pprimitive in R

P/J =
⋂

Pprimitive in R

P/J = J/J = 0

Recall: we say that R is local if the set of non-units = a 2-sided ideal.

Theorem 5.2.8

Let R 6= 0 be a ring. Then the following are equivalent:

1. R is local.

2. J (R) is the set of non-units.

3. ∃! maximal left ideal.
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4. ∃! maximal right ideal.

Remarks 5.2.9 If R is local then ∃! maximal 2-sided ideal.

Proof: We will prove that 4 ⇒ 3 later on. And it is trivial that 2 ⇒ 1. We want to show that 1 ⇒ 3:

Let I =set of non-units. So I is a maximal left ideal and clearly the only one.

3 ⇒ 2:

J (R) =
⋂

Imaximal left ideals

I = the unique maximal left ideal

Clearly J (R) ⊆set of non units.

Let x be a non-unit. Assume x /∈ J (R), Rx is a left ideal as Rx 6⊆ J (R) must have Rx = R, So x is left invertible.
So we have y ∈ R s.t. yx = 1.

Look at Ry, if Ry = R then y is 2-sided invertible, and its right inverse, x, will also be its left inverse meaning that
x is a unit - contradiction. So Ry is a proper left ideal and so contained in J (R). So y ∈ J (R), so 1 = y ·x ∈ J (R)
- contradiction.

3 ⇒ 4:

Since J (R) =the intersection of all maximal left ideal, we have that J (R) = the unique maximal left ideal.

J (R) is also a right ideal, Let I ′ be a maximal right ideal containing J (R) we want to show that it is the only
maximal right ideal.

Suppose I ′′ is a maximal right ideal and I ′′ 6= I ′. Let x ∈ I ′′\I ′ , so x /∈ J (R) (since J (R) ⊆ I ′).

As before if Rx = R so ∃y ∈ R s.t. yx = 1 so x as an element in I ′′ cannot be right invertible. So Ry is a proper
left ideal. This gives Ry ⊆ J (R) so y ∈ J (R) and yx = 1 ∈ J (R) a contradiction.

5.2.1 An element characterization of J (R) = J

Definition 5.2.10 For z ∈ R, R a ring:

1. z is left quasi-regular if 1 − z is left invertible in R. (z is right quasi-regular if 1 − z is right invertible in R
respectively).

2. z is quasi-regular if it is both left and right quasi-regular.

3. An ideal is left (right respectively) quasi-regular if all its elements are left (right respectively) quasi-regular.

PExample 5.2.11 () If z is nilpotent that z is quasi-regular:

(1− z)
(
1 + z + z2 + . . .+ zk

)
= 1

If zk+1 = 0.

Theorem 5.2.12

1. J (R) is a left quasi-regular ideal and it contains every left quasi-regular ideal.

2. J (R) = {z ∈ R | az is left quasi-regular for all a ∈ R}.

3. Every element of J (R) is both left and right quasi-regular.

1*. “right” version of (1).

2*. “right” version of (2).
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Proof:

1. Let z ∈ J (R), Suppose that it is not a left quasi-regular, so 1 − z is not left invertible so R (1− z) 6= R. So
R (1− z) ⊆ I0, I0 is a maximal left ideal. So 1− z ∈ I0 but also z ∈ I0 as J (R) ⊆ I0 So 1 = (1− z) + z ∈ I0,
a contradiction.
We shall show that if Z is a left quasi-regular ideal then Z ⊆ J (R). Suppose not, So there exists some
maximal left ideal I s.t. Z 6⊆ I. Because I is maximal, I +Z = R, so we can write 1 = b+ z. With b ∈ I and
z ∈ Z, so z is left quasi-regular. So b = 1− z is left invertible but then Rb = R but Rb ⊆ I a contradiction.
So Z ⊆ J (R).

2. By (1) all elements of J (R) are left quasi-regular and if z ∈ J (R) so is az for all a ∈ R and so az will be left
quasi-regular as well.
Now, assume az is left quasi-regular for all a ∈ R. So Rz is a left quasi-regular ideal, so by (1), Rz ⊆ J (R)
so z ∈ J (R).

3. Let z ∈ J (R). We need to show that 1− z is right invertible. Since 1− z is left invertible we have s ∈ R s.t.
s (1− z) = 1. Let y = 1− s, we have:

1 = (1− y) (1− z) = 1− y − z + yz ⇒ y + z = yz or (y − 1) z = y

So y is a multiple of z ∈ J (R) and so y ∈ J (R). So y is left quasi regular so 1− y = s is left invertible. And
so s is the 2-sided inverse of 1− z and so z is quasi-regular.

1*,2*. We can now define a so-called “right” Jacobson radical.

J ′ =
⋂

I′maximal right ideal

I ′ =
⋂

P ′"right primitive" ideal

P ′ = {z | za right quasi regular for all a ∈ R}

By all previous theorems on left ideal and (3) we have that J ′ is also a left quasi-regular ideal (we can repeat
3 on the other direction). But J contains all the left quasi-regular ideals so we get J ⊇ J ′. Since J ′ is a
right quasi-regular ideal (1*) and (2*) are true for J ’, we can have (1*) for J ′ i.e. J ′ contains every right
quasi-regular ideal. But J is also a right quasi-regular ideal, So J ⊆ J ′ and J = J ′.

Corollary 5.2.13

R “left semi-primitivity” is equivalent to “right semi-primitivity”.

5.2.2 Example of a primitive ring that is not simple

Let V be an infinite dimensional vector space over a division ring ∆. Left L = End∆V =linear operators on V over
∆.

We shall show that L acts faithfully and irreducibly on V . The representation is identity map - so faithful.

To show irreducibility we need to show that if we have and element x ∈ V s.t. x 6= 0 then Lx = V . But if y ∈ V ,
we have a linear operator mapping x to y.

We show L is not simple. Let I0 = {l ∈ L | l (V ) is finite dimension}. We shall show that I0 is a non-trivial ideal.
Clearly I0 6= 0, L.

If ϕ, ψ ∈ I0 then (ϕ+ ψ) (V ) =finite dimension. Now let ϕ ∈ I0, l ∈ L.

l (ϕ (V )) = image of a finite dimension subspace under l- so also finite dimension

ϕ (l (V )) ⊆ ϕ (V ) = finite dimension.

So ϕl ∈ I0 and lϕ ∈ I0

Remarks 5.2.14 One can show that I0 is a minimal ideal.

If dim∆ V = ℵ0 then I0 is the only 2-sided ideal in L so L/I0 is simple.

If dim∆ V > ℵ0 then we also have an ideal I1 ⊇ I0 and I1 = {l ∈ L | l (V ) has countable dimension}. 17/06/2014
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Chapter 6

Density

6.1 Density theorem for completely reducible modules

Theorem 6.1.1 (Density theorem for completely reducible modules)

Let M be a completely reducible R-module.
Denote:

R′ = EndRM

R′′ = EndR′M = {ϕ ∈ EndM | ϕ commutes with all Rendomorphisms}

Let {x1, . . . , xn} ∈M and a′′ ∈ R′′ then there exists a ∈ R s.t. a′′xi = axi for all i ≤ i ≤ n.

In order to prove this theorem we use 2 lemmas:

Lemma 6.1.2

Let M completely reducible, If N is an R-submodule of M then N is an R′′-submodule.

Proof: We know that M is completely reducible hence we have an R-submodule P s.t. P ⊕ N = M . Let e
be the projection of M onto N w.r.t the decomposition. e (M) = N . As N and P are R-submodules, e is an
R-endomorphism. That is: e ∈ R′. Let a′′ ∈ R′′:

a′′ (N) = a′′ (e (M))

But a′′ commutes with every R-endomorphism, in particular with e hence:

= e (a′′ (M)) ⊆ e (M) = N

Lemma 6.1.3

Let M be a module. M (n) =M ⊕ . . .⊕M
︸ ︷︷ ︸

n

. Then EndRM
(n) =set of maps (u, . . . , un) 7→ (v1, . . . , vn) where:

vi =
∑

a′i,juj a′i,j ∈ R′ = EndRM

It is easy to show that each such map is an element of EndRM
(n). We want to show that every element is of this

form.

Proof: Let ℓ ∈ EndRM
(n). For any vector (u1, . . . , un) ∈M (n) denote:

ℓ (0, . . . , ui, . . . 0) = (u1,i, . . . , un,i)
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Let a′j,i be a map sending ui 7→ uj,i. x ∈M ℓ

(

0, . . . ,

i
︷︸︸︷
x , . . . 0

)

= a′j,i = jth component of ℓ (0, . . . , x, . . . 0).

We claim a′j,i ∈ R′ . If a ∈ R: a′j,i (ax) = jth component of ℓ (0, . . . , ax, . . . , 0) = ℓa (0, . . . , x, . . . 0) = aℓ (0, . . . , x, . . . , 0) =
aa′j,i(x) the transition from ℓa = aℓ is because ℓ is R-endomorphism).

ℓ (u1, . . . , un) =

n∑

i=1

ℓ (0, . . . , ui, . . . , 0)

=

n∑

i=1

(
a′1,iui, a

′
2,iui, . . . , a

′
n,iui

)

=

(
n∑

i=1

a′1,iui, . . . ,
n∑

i=1

a′n,iui

)

as required.

6.1.1 Proof of the theorem

Recall that the theorem states:

Theorem 6.1.4 (Density theorem for completely reducible modules)

Let M be a completely reducible R-module.
Denote:

R′ = EndRM

R′′ = EndR′M = {ϕ ∈ EndM | ϕ commutes with all Rendomorphisms}

Let {x1, . . . , xn} ∈M and a′′ ∈ R′′ then there exists a ∈ R s.t. a′′xi = axi for all i ≤ i ≤ n.

We want to prove this theorem using the lemmas we’ve just shown. Proof: For n = 1 we have x ∈M (completely
reducible module), a′′ ∈ R′′. We need a ∈ R s.t. a′′x = ax.

Look at Rx = R-submodule of M . So by lemma 6.1.2 it is an R′′-submodule. So a′′x ∈ Rx so ∃a ∈ R: a′′x = ax.

For arbitrary n we use the case for n = 1 w.r.t module M (n) (and use the lemma 6.1.3).

M (n) is also completely reducible. Let x1, . . . , xn ∈ M , a′′ ∈ R′′ and define ϕ ∈ EndM (n): (x1, . . . , xn) 7→
(a′′x, . . . , a′′xn). ϕ will be an element of EndEndRM(n)M (n). Since elements of EndRM

(n) are, by lemma 6.1.3 ,
defined by matrices of elements in EndRM = R′ and a′′ commutes with each a′ji so ∃a ∈ R s.t.

(ax, . . . , axn) = a (x1, . . . , xn) = ϕ (x1, . . . , xn)

= (a′′x1, . . . , a
′′xn)

6.2 Another definition of density

Definition 6.2.1 Let V be a vector space over a division ring ∆, S ⊆ End∆V =linear transformations on V is
called dense in End∆V if given x1, . . . , xn ∈ V linear independent over ∆ and y1, . . . , yn ∈ V there exists ϕ ∈ S
s.t. ϕ (xi) = yi.

Remarks 6.2.2 If V is finite dimensional, the only dense set in End∆V is itself (as taking x1, . . . , xn to be a basis
∃!ϕ ∈ End∆V mapping bases to any set of n elements).
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6.2.1 Density theorem for primitive rings

Theorem 6.2.3 (Density theorem for primitive rings)

R is primitive if and only if R is isomorphic to a dense ring of linear transformation in a vector space over a division
ring.

Proof: If R is primitive, we have M irreducible module and representation ρ : R → EndM with trivial kernel (so
M is faithful irreducible module). By Schur’s Lemma we know that EndRM is a division ring which we call ∆.
R ∼= ρ (R) is a subring of EndM but in fact is a subring of End∆M as if ϕ ∈ ∆ and a ∈ R, x ∈M then:

aϕ (x) =
︸︷︷︸

ϕ∈EndRM

ϕ (ax)

So R →֒ End∆M . It remains to show that R is dense in End∆M . Let x1, . . . , xn ∈ M linear independent over ∆
and y1, . . . , yn ∈ M arbitrary. ∃ℓ linear transformation in End∆M s.t. ℓ (xi) = yi, 1 ≤ i ≤ n. By our last theorem
(Density theorem for completely reducible modules), since M is a completely reducible module as it is irreducible,
we have a ∈ R s.t. a (xi) = yi, ≤ i ≤ n. So it is dense.

Now, assume R ∼=dense ring of linear transformation in a vector space M over a division ring ∆. Regard M as an
R-module by defining ax = ρ (a)x, x ∈ M . M will be irreducible as if x ∈ M 6= 0 and arbitrary y ∈ M . As R is
dense, we have a ∈ R s.t. ax = y, so Rx =M . M is faithful as ρ is given as an isomorphism.
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Chapter 7

Structure theorems

7.1 Structure theorem for primitive artinian rings

Theorem 7.1.1 (Structure theorem for primitive artinian rings)

The following conditions on a nonzero ring R are equivalent:

1. R is simple and left-artinian.

2. R is primitive and left-artinian.

3. R ∼= End∆M , M is finite dimension vector space over a division ring ∆.

The 1 ⇐⇒ 3 is known as the Wedderburn-Artin theorem for simple artinian rings. Note that we already know
that 1 ⇒ 2 as we’ve seen simple⇒primitive. Proof: We first show 2 ⇒ 3:

As in previous theorem, we have M faithful irreducible module, ∆ = EndRM division ring and R ∼=dense ring of
linear transformations of M over ∆.

If we show M finite dimension then R ∼= End∆M as it is dense in End∆M .

Now, suppose M infinite dimension over ∆, so we have infinite linear independent set x1, . . . , xn, . . . . Let Ij =
annR (xj) , These are left ideals in R: I1 ∩ . . . ,∩In = annR {x1, . . . , xn}. There exists a linear transformation in
End∆M sending x1, . . . , xn to 0 and xn+1 to a nonzero element. As R is dense in End∆M we have a ∈ R s.t.
{

axi = 0 1 ≤ i ≤ n

axn+1 6= 0
. So a ∈ I1 ∩ . . . ∩ In but a /∈ I1 ∩ . . . ∩ In+1. So we get a properly descending sequence of

left ideals, contradiction to the artinian property.

We now want to show that 3 ⇒ 1:

Suppose R = End∆M , M finite dimensional over a division ring ∆. So by assignment 4 this ring is simple! It is an
artinian ring as R finite dimensional over ∆ as well!

Remarks 7.1.2 End∆M are anti-isomorphic to Mn (∆) where n = dim∆M . ϕ ⇐⇒ A, ψ ⇐⇒ B we can show

that ϕψ ⇐⇒
(
BTAT

)T
only if ∆ commutative we get BTAT (AB)

T
.

08/07/2014
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Chapter 8

Hilbert’s Nullstellensatz

8.1 Definition

Let F ⊆ E be fields. R = F [X1, . . . , Xn].

Definition 8.1.1 Given ~x = (x1, . . . , xn) ∈ En denote f (~x) = f (x1, . . . , xn) , f ∈ R. Given Q ⊂ R denote:

Zer (Q) = {~x ∈ En | f (~x = 0 ∀f ∈ Q)} = Variety determined by Q

Definition 8.1.2 A set A ⊆ En is called algebraic if it is of the form Zer (Q) for some Q ⊂ R.

PExample 8.1.3 () Zer ({0 = 0R}) = En.

PExample 8.1.4 () Zer (R) = ∅.

PExample 8.1.5 () If E = F , then {(x1, . . . , xn)} = Zer ({Xi − xi | 1 ≤ i ≤ n}).

PExample 8.1.6 () R = Q [X,Y ], . Then:

Zer
({
Y −X2

})
= parabola y = x2in R2

Lemma 8.1.7

The collection of algebraic sets in En is closed under finite unions and arbitrary intersections.

Proof: If Aα = Zer (Qα) then:
⋂

Aα = Zer
(⋃

Qα

)

Zer (Q1) ∪ Zer (Q2) = Zer ({f · g | f ∈ Q1, g ∈ Q2}).

Definition 8.1.8 Zariski Topology on En: Closed sets = algebraic sets.

Theorem 8.1.9

If F ⊆ F ⊆ E. If A algebraic set over F in F
n

then there exists a unique algebraic set B in En s.t. B ∩ Fn
= A.

Remarks 8.1.10 B doesn’t have to be equal to A. For example, consider the zero polynomial.

We shall prove this theorem later, first we will see some corollaries.
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Corollary 8.1.11

If S ⊆ En be a nonempty algebraic set over F . F ⊆ E, E algebraic closed. Then S contains a point all of whose
coordinates are algebraic over F .

Proof: (of the corollary)

Suppose S ∩ Fn
= ∅.

Then S and ∅ are 2 distinct sets over F in En with equal intersections. Contradiction to the uniqueness in thm,
taking A = ∅.

Definition 8.1.12 Let A ⊆ En. Pol (A) = {f ∈ R | f (~x) = 0 ~x ∈ A} (or I (A))

Lemma 8.1.13

If A is algebraic then:
Zer (Pol (A)) = A.

Remarks 8.1.14 Zer (Pol (A)) ⊇ A always, even if A is not algebraic.

Proof: If ~x ∈ A, f (~x) = 0 for all f ∈ Pol (A) so ~x ∈ Zer (Pol (A)).

Now show the converse.

As A algebraic, there exists Q ⊆ R s.t. A = Zer (Q). If f ∈ Q then f (~x) = 0 for all ~x ∈ A. So f ∈ Pol (A), so
Q ⊆ Pol (A).

Clearly, for any B,C ⊆ R:
B ⊆ C → Zer (B) ⊇ Zer (C)

Applying it to Q ⊆ Pol (A) we get that:
A = ZerQ ⊇ Zer (Pol (A))

which completes the proof.

Remarks 8.1.15 Pol (A) is always an ideal.
So the lemma implies that every algebraic set is of the form Zer (I) for some ideal I in R.

Corollary 8.1.16

Every algebraic set is of the form Zer (Q) where Q is a finite set of polynomials.

Proof: By the Hilbert’s basis theorem (which we won’t prove in class, but it can be found in Isaacs: Graduate
Algebra page 434).

If R is noetherian then so is R [x].

And inductively we get that F [X1, . . . , Xn] is noetherian, F is a field.

So we have that our ring R = F [x1, . . . , xn] is noetherian.

So if A is an algebraic set and A = Zer (I). I ⊳R then I is finitely generated by a finite set Q in R and A = Zer (Q).

8.2 The Nullstellensatz

Theorem 8.2.1 (Nullstsllensatz )

Let R ⊇ F , E is algebraic closed.
Let I ben an ideal in R = F [X1, . . . , Xn] then Pol (Zer (I)) =

√
I.

√
I = Nilrad (I) = {f ∈ R | ∃n ∈ N fn ∈ I}
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Remarks 8.2.2
√
I ⊆ Pol (Zer (I)) as if f ∈ R and fn ∈ I then for ~x ∈ Zer (I), fn (~x) = (f (~x))

n
= 0.

So as ~x ∈ En we must have f (~x) = 0 so f ∈ Pol (Zer (I)).

First we show the weak Nullstellensatz:

Theorem 8.2.3 (The weak Nullstellensatz )

If I is a proper ideal of R = F [X1, . . . , Xn], F ⊆ E and E is algebraic closed then: Zer (I) 6= ∅.

Proof: Direct proof: I ⊳
6=
R (proper). There exists by Zorn a maximal ideal M of R containing I.

So R/M = R is a field. Clearly M ∩F = {0} (as M contains no units). So we have an embedding of F in R: F ⊆ R.

Let αi = Xi +M . R = F [Xi, . . . , Xn]. So R = F [α1, . . . , αn].

So as R is a field we get that the αi are algebraic over F . F ⊆ R ⊆ E.

We claim (α1, . . . , αn) ∈ R
n ⊆ En is in fact an element of Zer (I) as if f ∈ I:

f (α1, . . . , αn) = f (X1 +M, . . . ,Xn +M) = f (X1, . . . , Xn) = 0

as f ∈ I ⊆M .

We shall now prove the Nullstellensatz: Proof: Remains to show:

Pol (Zer (I)) ⊆
√
I

Let f ∈ Pol (Zer (I)). Need to show ∃n ∈ N: fn ∈ I. Let T be a new indeterminate. Look at the ring S = R [T ] =
F [X1, . . . , Xn, T ].

Detnote by I [T ] = {g ∈ S | coeffs of glie in I}. This is clearly an ideal in S. Look at the ideal: J = I [T ] +
(1− T · f)S. We claim: J = S.

Suppose not, then J is a proper ideal and we can use the weak Nullstellensatz with respect to S. So applying the
weak Nullstellensatz to S = F [X1, . . . , Xn, T ] we have that Zer (J) 6= ∅. So we have (α1, . . . , αn, β) ∈ En+1 in
Zer (J).

I ⊆ J so ~α = (α1, . . . , αn) ∈ ZerI f ∈ Pol (Zer (I)) so also f (~α) = 0 but then as 1 − Tf ∈ J we get 1 ∈ J
contradiction.

So we have:
S = I [T ] + (1− Tf)S

In particular, we have u ∈ I [T ] , v ∈ S = R [T ].

1 = u+ (1− Tf) v

The above can be regarded as an identity over field of fraction of R: R∗.
1
f ∈ R∗ substitute in 1 = u+ (1− Tf) v in place of T :

1 = u

(
1

f

)

+

(

1− 1

f
f

)

v

(
1

f

)

So u
(

1
f

)

= 1.

Denote: u (T ) = anT
n + . . .+ a1T + a0, ai ∈ I.

1 = an
1

fn
+ . . .+ a1

1

f
+ a0

fn = an + an−1f + . . .+ a1f
n−1 + a0f

n

︸ ︷︷ ︸

∈I

So fn ∈ I or f ∈
√
I.
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8.3 Leftovers

We now want to prove 8.1.9:

Theorem 8.3.1

F ⊆ F ⊆ E, E algebraic closed. We had A ⊆ F
n

algebraic set.
We want to show there exists a unique B ⊆ En s.t. B ∩ Fn

= A.

Proof: Let ZerE ,ZerF be the zero set function in E and F respectively. Define B = ZerE (Pol (A)).

B ∩ Fn
= ZerF (Pol (A)) = A.

It remains to show uniqueness. Suppose C ⊆ Fn, C ∩ Fn
= A. Again using lemma:

C = ZerE (Pol (C))

A = C ∩ Fn
= ZerF (Pol (C))

Now, use the Nullstellensatz in F :
Pol (ZerF (I)) =

√
I

Taking I = Pol (C) we then get: √
I = Pol (ZerF (Pol (C))) = Pol (A)

Again in E by the Nullstellensatz:
I = Pol (C) = Pol (ZerE (I)) =

√
I

So:
Pol (A) = Pol (C)
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