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Chapter 1

Key Agreement

19/03/2015

1.1 Definition of the problem

We have two actors, Alice and Bob, and they like to communicate in a secure way. There is a channel of commu-
nication between them, but it is eavesdropped.

If Alice and Bob had a shared long randomness that is known only to them, they could communicate securely. But
the problem is to obtain such long randomness.

So we want a way to obtain a random string using the channel when the eavesdropper cannot learn anything about
the string.

1.2 Diffie-Hellman Key Exchange Protocol

We are generating a group G of order q with a generator g (we assume that q is prime because it is easier). The
group is public and anyone knows it.

The protocol is as follows:

Alice Bob

Choose a random element:

x
R∈ Zq

Choose a random element:

y
R∈ Zq

Send gx

Send gy

Calculates:
(gy)x = gxy

Calculates:
(gx)y = gxy

DHKE

Note that now, Alice and Bob both obtain the same group element gxy! But the eavesdropper (or the adversary)
only see gx and gy.

We want to argue that this protocol is secure. This is not true in any case, because for example if the adversary
has unbounded computational power he can find x and y (by simply check g1, g2, . . .).
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1.2. DIFFIE-HELLMAN KEY EXCHANGE PROTOCOL CHAPTER 1. KEY AGREEMENT

Remarks 1.2.1 Finding x while obtaining gx is actually solving the Discrete Log problem.

But we still want to define security, So we need to limit the computational power of the adversary, and define how
to. In order to do so, we will first define what is a “security parameter”.

1.2.1 Security Parameter

Definition 1.2.2 (Security Parameter (k)) We allow the adversary to run in time poly(k). We say that the
adversary “wins” if “advantage”> 1

poly(k) .

Definition 1.2.3 (Negligible Function) ε (k) is negligible if ∀polynomial p ∃k0 ∀k > k0 ε (k) < 1
p(k) .

Remarks 1.2.4 We usually abuse the notation and write ε (k) = negl (k) (while we should have write something
like ε ∈ Negl, but no one does that).

So, we said that we need a group G, we now want to define a family of groups for every k.

1.2.2 An example construction for the group G

We are going to define the group Gk as follows:

1. Find a safe prime p of k-bits.

Remarks 1.2.5 We say that p is prime if q = p−1
2 is also prime. There is a way to generate them, but we are not

going to discuss how.

2. Gk = QRp (All the quadratic residue in p, meaning all the elements that has square roots in the group).

Note that the order of Gk is prime (because p is safe prime and QRp has p−1
2 the elements of Zp). It is conjectured

that Discrete Log problem is hard in this group.

Note that Alice and Bob should be polynomial in k. But note that calculating gx is logarithmic in the order of
the group by repeated squaring. We calculate g square it and get g2. Now we square g2 and get g4. We repeat
the process and get g8, g16, . . . , g2

i

. Now we decompose x into binary representation and then we can multiply the
corresponding g2

i

and get gx.

1.2.3 One way function

We claim that the function exp (g, x)→ (g, gx) is one way function.

Definition 1.2.6 (One Way Function) We say that fk : {0, 1}k → {0, 1}k
′

is a One Way Function (OWF) if:

1. fk is computable in poly (k) time.

2. ∀A PPT we have:
Pr

x
R
∈{0,1}k

[
f(A

(
f (x) , 1k

)
) = f (x)

]
= negl (k)

So, if Discrete Log is hard for G, then exp (g, x)→ (g, gx) is a OWF.

6



CHAPTER 1. KEY AGREEMENT 1.2. DIFFIE-HELLMAN KEY EXCHANGE PROTOCOL

1.2.4 Back to security

But is it enough? Can the adversary do other things other than simply solve Discrete Log?

The answer is that we do not know. We do not know how to prove the protocol only by Discrete Logarithm. In
fact we know of groups that Discrete Log is hard, but still this protocol won’t be secure.

What is the view of the adversary? (what does he see)

The view of the adversary is:

1. G, g, q.

2. gx (for random x).

3. gy (for random y).

And in this case, that is all. The goal of the adversary is to find gxy.

We are going to define the game:

Challenger Adversary

(G, g, q)← GroupGen
(
1k
)

x, y
R∈ Zq

(G, g, q) , gx, gy

Choose at random: b
R∈ {0, 1}

If b = 0 then z = x · y
If b = 1 then z

R∈ Zq

gz

b′

Adversary wins if b′ = b

DHKE-Game

We want to evaluate the advantage of the adversary:

DHKE−Adv [A] (k) =

∣
∣
∣
∣

Pr
Randomness of Challenger and Adversary

[
A
(
1k
)

wins
]
− 1/2

∣
∣
∣
∣

=
1

2

∣
∣Pr
[
A
(
1k
)
= 1 | b = 0

]
− Pr

[
A
(
1k
)
= 1 | b = 1

]∣
∣

We do not know how to prove security for this protocol, but we use this protocol as a base line for other constructions.

We define an Hardness Assumption which encapsulates the hardness of this protocol.

We assume Decisional Diffie-Hellman (DDH). The assumption, with respect to GroupGen, will yield that the
protocol is secure.

In order to define it formally we need some definitions:

7



1.2. DIFFIE-HELLMAN KEY EXCHANGE PROTOCOL CHAPTER 1. KEY AGREEMENT

Definition 1.2.7 (Computational Indistinguishability) X = {Xk} , Y={Yk} . We say that X and Y are
Computational Indistinguishable if:

∀A PPT DistAdv [A] =
1

2

∣
∣
∣
∣
∣
Pr

x
R
∈Xk

[
A
(
1k, x

)
= 1
]
− Pr

y
R
∈Yk

[
A
(
1k, y

)
= 1
]

∣
∣
∣
∣
∣
= negl (k)

We will write X ∼= Y .

Now we can define DDH:

Definition 1.2.8 (Decisional Diffie-Hellman (DDH)) With respect to GroupGen:

((G, g, q) , gx, gy, gxy) ∼= ((G, g, q) , gx, gy, gu)

For a uniform u. Also:
(g, gx, gy, gxy) ∼= (g, gx, gy, gu)

8



Chapter 2

Public Key Encryption

2.1 Definition

We now have two players, Encryptor and Decryptor. We want that the decryptor will have a secret key sk and that
the encryptor will have a public key pk (which is also available for every one who eavesdrop the line. And we want
that the encryptor will have a message m and he will send to the decryptor Enc (m) and that the eavesdropper
won’t be able to learn anything about m.

Definition 2.1.1 (Public Key Encryption (PKE)) PKE system is three algorithms:

1. KeyGen
(
1k
)
→ (sk, pk).

2. Encpk
(
1k,m

)
→ c, where m ∈Mk (the message space).

3. Decsk
(
1k, c

)
→ m.

Such that:

Correctness:
Decsk (Encpk (m)) = m

This is a definition for perfect correctness. But we can also define in in a probabilistic way:

∀m Pr
(sk, pk)← KeyGen

(
1k
)

r

[Decsk (Encpk (m; r)) 6= m] = negl (k)

With out loss of generation, the Dec algorithm can be deterministic but the KeyGen and Enc should be randomized.

Remarks 2.1.2 We give the KeyGen the parameter 1k so that the algorithm will be able to run polynomial time
in the security parameter. If we would have given it only k then it will only be log k.

2.2 Security

Again we are going to define a game between the challenger and the adversary:

9



2.2. SECURITY CHAPTER 2. PUBLIC KEY ENCRYPTION

Challenger Adversary

Generates:
(sk, pk)← KeyGen

(
1k
)

pk

Samples: m
R∈Mk and encrypts:

c = Encpk (m)

c

m′

Adversary wins if m′ = m

PKE-Game

This is a one way to define security. This definition doesn’t cover everything. For example, the adversary might
be able to learn something about m but not everything. If the message space is very small (for example 0, 1) this
definition is good.

2.2.1 Chosen Plaintext Attack (CPA)

A better definition is:

10



CHAPTER 2. PUBLIC KEY ENCRYPTION 2.2. SECURITY

Challenger Adversary

Generates:
(sk, pk)← KeyGen

(
1k
)

pk

Chooses: m0,m1 ∈Mk

m0,m1

Choose at random: b
R∈ {0, 1}

Encrypts: c = Encpk (mb)

c

b′

Adversary wins if b′ = b

CPA-Security

This notion of security is called security against Chosen Plaintext Attack.

The definition for the encryption to be secure is:

CPA−Adv [A] = |Pr [A wins]− 1/2| = negl (k)

But why can’t the adversary can simply encrypt m0 and m1 and compare with c? That’s why Enc need to be
probabilistic algorithm. So there are many encryptions for m0 and m1, and the adversary should not be able to
distinguish between both sets. 24/03/2015

2.2.2 Aloni Attack

Aloni asked after last lecture, can we generalize the above definition. For example:

11



2.2. SECURITY CHAPTER 2. PUBLIC KEY ENCRYPTION

Challenger Adversary

Generates:
(sk, pk)← KeyGen

(
1k
)

pk

A distribution: D

Choose at random: m← D
Encrypts: c = Encpk (m)

c

m′

Adversary wins if m′ = m

Aloni-Game

We would define the advantage as follows:

Aloni−Adv [A] = Pr [m = m′]−max
x

Pr [D = x]

Remarks 2.2.1 It is not clear that this makes sense, It might not. Think about it at home.

Note that encryption scheme that is secure against Aloni’s is more powerful than the CPA, because we can choose
a distribution that with probability 0.5 choose between m0 and m1. Meaning that if we have adversary that can
break Aloni’s game, he can break also normal CPA.

Meaning that we would rather have an encryption scheme that will be secure in the term Aloni introduced than
the normal CPA.

2.2.3 MMCPA (Multiple message CPA)

Now we want to consider the following game:

12



CHAPTER 2. PUBLIC KEY ENCRYPTION 2.2. SECURITY

Challenger Adversary

Generates:
(sk, pk)← KeyGen

(
1k
)

Choose at random: b
R∈ {0, 1}

pk

Chooses: m
(i)
0 ,m

(i)
1 ∈Mk

m
(i)
0 ,m

(i)
1

Encrypts: c(i) = Encpk

(

m
(i)
b

)

c(i)

Repeat

b′

Adversary wins if b′ = b

CPA-Security

We define the advantage:

MMCPA−Adv [A] (k) = |Pr [b′ = b]− 1/2|

=
1

2
|Pr [b′ = 1 | b = 0]− Pr [b′ = 1 | b = 1]|

And we of course say that encryption scheme is secure if any PPT A has an MMCPA−Adb [A] (k) = negl (k).

Theorem 2.2.2

If E is CPA− Secure ⇐⇒ E is MMCPA− Secure.

Proof: It is trivial that if E is MMCPA− Secure than it is also CPA− Secure. We want to show the other direction.

Let E be a CPA− Secure scheme. And let A be a PPT. Denote ε (k) = MMCPA−Adv [A] (k). Our goal is to
prove that ε (k) = negl (k).

Denote t (k) as the running time of A, and because A is a PPT then t (k) = poly (k).

We are going to define Hybrids.

Hybrid H0: The challenger is the same as in MMCPA with b = 0.

PrH0 [b
′ = 1] = PrMMCPA [b′ = 1 | b = 0]

13



2.2. SECURITY CHAPTER 2. PUBLIC KEY ENCRYPTION

Hybrid Hj:

c(i) =







Encpk

(

m
(i)
1

)

i ≤ j

Encpk

(

m
(i)
0

)

i > j

Now, note that:

PrHt(k)
[b′ = 1] = PrMMCPA [b′ | b = 1]

We want to define an adversary BA
j (the superscript A means that B can run A), algorithms which will be adversaries

to the original CPA game.

So, B plays agains CPA challenger:

1. Receive pk and forward it to A.

2. For i = 0 to t (k):

(a) Receive
(

m
(i)
0 ,m

(i)
1

)

from A

(b) If i < j send A: c(i) = Encpk

(

m
(i)
1

)

.

(c) If i = j send the challenger
(

m
(j)
0 ,m

(j)
1

)

and send the response to A

(d) If i > j send A: c(i) = Encpk

(

m
(i)
0

)

.

3. Receive b′ from A. return β′ = b′.

14



CHAPTER 2. PUBLIC KEY ENCRYPTION 2.2. SECURITY

Challenger B A

Generates:
(sk, pk)← KeyGen

(
1k
)

Choose at random: b
R∈ {0, 1}

pk

pk

Chooses: m
(i)
0 ,m

(i)
1 ∈Mk

m
(i)
0 ,m

(i)
1

Encrypts: c(i) = Encpk

(

m
(i)
1

)

c

i < j

m
(j)
0 ,m

(j)
1

Encrypts: c = Encpk (mb)

c

c

i = j

Encrypts: c(i) = Encpk

(

m
(i)
0

)

c

i > j

Repeat

b′

b′

CPA-Security

15



2.2. SECURITY CHAPTER 2. PUBLIC KEY ENCRYPTION

Note that the challenger’s choice of b differ between Hj and Hj−1. Meaning that if we can distinguish between two
consecutive hybrids, we can break the CPA security. Because:

CPA−Adv [Bj ] (k) =
1

2
|Pr [β′ = 1 | β = 0]− Pr [β′ = 1 | β = 1]|

=
1

2

∣
∣PrHj−1 [b

′ = 1]− PrHj [b
′ = 1]

∣
∣

So we have:

MMCPA−Adv [A] (k) =
1

2

∣
∣PrHt(k)

[b′ = 1]− PrH0 [b
′ = 1]

∣
∣

≤
t(k)
∑

j=1

CPA−Adv [Bj ]

≤ t (k) · CPA−Adv [Bj∗ ]

Where we used the triangle inequality in the second step, and the last, we defined Bj∗ as the best adversary against
CPA.

Remarks 2.2.3 Note that another option is to choose j at random. And consider the adversary Brand. Note that:

CPA−Adv [Brand] (k) =
1

2
|Pr [β′ = 1 | β = 0]− Pr [β′ = 1 | β = 1]|

=
1

2

∣
∣
∣
∣

1

t

∑

PrHj [b
′ = 1]− 1

t

∑

PrHj−1 [b
′ = 1]

∣
∣
∣
∣

=
1

2t

∣
∣
∣

∑

PrHj [b
′ = 1]− PrHj−1 [b

′ = 1]
∣
∣
∣

=
1

2t
MMCPA−Adv [A]

Remarks 2.2.4 The idea of the Bj∗ is used in a non-uniform variant of the definition, where the adversary is also
allowed to have an advice string that depends only on the security parameter (telling him which is the best hybrid
to attack for example).

We showed that for every adversary A for the MMCPA there exists adversary B
(
1k, j

)
for CPA s.t. ∀j, k we have:

Pr
[
B
(
1k, j

)
= 1 | β = 1

]
− Pr

[
B
(
1k, j

)
= 1 | β = 0

]
=

PrHj

[
A
(
1k
)
= 1
]
− PrHj−1

[
A
(
1k
)
= 1
]

From that we derived that for all k we have:

t(k)
∑

j=1

(
Pr
[
B
(
1k, j

)
wins (1M)CPA

]
− 1/2

)
= Pr [A wins MMCPA]− 1/2 (⋆)

We now want to bound the sum. For that, we showed two solutions:

1. The non-uniform solution:

∀k ∃j∗ (k) ∀j
∣
∣Pr
[
B
(
1k, j

)
wins

]
− 1/2

∣
∣ ≤

∣
∣Pr
[
B
(
1k, j∗

)
wins

]
− 1/2

∣
∣

We define: B∗
(
1k
)
= B

(
1k, j∗ (k)

)
. Thus:

|Pr [A wins MMCPA]− 1/2| ≤ t (k)
∣
∣Pr
[
B∗
(
1k
)

wins CPA
]
− 1/2

∣
∣

And now, the right hand side, is only a function of k instead of function of j and k.
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Remarks 2.2.5 We are allowing the adversary to have an advice (the j∗) that depends only on the security
parameter).

2. The random solution:

We define B∗∗
(
1k
)

as follows: j
R∈ [t (k)] and run B

(
1k, j∗∗

)
. As an exercise prove that it works here. It

doesn’t always work. The reason that it work here is because that the equation (⋆) is true without absolute
value.
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Chapter 3

Groups

3.1 Definition

Definition 3.1.1 (Group) A group is a set of elements and an operation: G=(S, ·) where: · : S × S → S. And it
maintains:

1. If g, h ∈ G→ g · h ∈ G.

2. g1, g2, g3 ∈ G→ g1 · (g2 · g3) = (g1 · g2) · g3.

3. ∃1 ∈ G s.t. ∀g ∈ G: g · 1 = 1 · g = g.

4. ∀g ∈ G ∃h ∈ G g · h = h · g = 1

Definition 3.1.2 (Commutative Group) We say that the group is commutative if: ∀g, h g · h = h · g.

Definition 3.1.3 (Cyclic Group) We say that a group is cyclic if it is generated by a single element g (called a
generator) and denote it by 〈g〉. Thus the group is:

g0 = 1, g1, g2, g3, . . . , gq = g0 = 1

And we say that q is the order of 〈g〉 (also the order of the element g).

Remarks 3.1.4 We are only talking about finite groups.

Remarks 3.1.5 Note that gx = gx ( mod q). Because, take a look at: x = y + qz. We can write:

gx = gy+qz = gy (gq)
z
= gy (1)

z
= gy

3.2 What can we calculate easily?

Note that if we have: gx, gy we can easily calculate gx+y by simply multiplying them.

Now lets say that we have h and we want to calculate h−1, we can simply do that by raising it to the exponent
q − 1, hq−1 by the binary decomposition method we’ve seen.

Now, assume we have: gx, gy, a, b and we want to calculate: gax+by, by calculating (gx)a , (gy)b and taking the
product.

We can also consider gx, a (where x, a are vectors) and we can calculate: g(x,a) from the same reason of the last.

We can also consider the case:
(
gM
)

i,j
= gMi,j where gM is an n ×m matrix. And then given two matrices: L

which is l × n and R which is m× r and calculate: gL·M·R which is an l × r matrix.
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3.3. BACK TO KEY AGREEMENT CHAPTER 3. GROUPS

3.3 Back to Key Agreement

Recall that in the Diffie-Hellman key agreement we had algorithm: GroupGen
(
1k
)
→ (G, g, q) which returned a

group G, a generator and the order q.

Definition 3.3.1 (The DDH Assumption (for GroupGen) ) We generate a group (G, g, q) = GroupGen
(
1k
)

and sample: x, y, u
R∈ Zq then:

(g, gx, gy, gxy) ∼= (g, gx, gy, gu)

Recall that we had the key agreement protocol:

Alice Bob

Choose a random element:

x
R∈ Zq

Choose a random element:

y
R∈ Zq

Send gx

Send gy

Calculates:
(gy)

x
= gxy

Calculates:
(gx)

y
= gxy

DHKE

Now alice and bob can use gxy as their key. The DDH assumption means that they could ignore the gxy and simply
agree on gu in some miraculous way (telepathy) and the adversary won’t be able to distinguish between the two
cases. That gives us the security for the protocol.
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Chapter 4

ElGamal Encryption

4.1 Definition

The ElGamal encryption was published around 8 years after Diffie-Hellman published their paper.

Definition 4.1.1 (ElGamal Encryptin) :

• KeyGen
(
1k
)
:

(G, g, q) = GroupGen
(
1k
)

Generate: s
R∈ Zq

And set sk = s and pk = (gs, (G, g, q)) (we are going to take the definition of the group (G, g, q) as implicit,
and not going to mention them anymore).
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4.1. DEFINITION CHAPTER 4. ELGAMAL ENCRYPTION

• Encpk (m):

Parse pk = gs. Generate y
R∈ Zq and then: (gy, (gs)

y ·m).

Remarks 4.1.2 The message space of this scheme is: M = G.
But that is a little bit weird. Because we want to encrypt for example the message “Hello World!”, so we can reduce
the message space to be M ′ = {1, g} (meaning g0, g1), so we can encrypt 0 and 1.
But if we encrypt bit by bit, we are choosing different y for every bit! Meaning, we run the entire Enc algorithm
for every bit.

• Decsk (c):
We have:c = (gy, gw) and the secret key sk = s so we can calculate:

gw · (gy)−s = gw−sy

Correctness: Remember that correctness means that Decsk (Encpk (m)) = m.

Note that if we properly encrypt a message then: c = (gy, gw) = (gy, gsym). So if we decrypt we get: gw−ys =
gsy ·m · g−ys = m.

Security: We want to show CPA-security. We’ve seen that it is enough to consider the one message CPA-game.
We will prove security by reduction to the hardness of the DDH assumption.

Let A be a PPT that tries to break CPA-security for the encryption scheme with advantage ε (k).

Challenger Adversary

Generates:
(sk, pk)← KeyGen

(
1k
)

pk = gs

Chooses: m0,m1 ∈Mk

m0,m1

Choose at random: b
R∈ {0, 1}

(gy, gys ·mb)

b′

Adversary wins if b′ = b

ElGamal-CPA-Security

In order to prove security, we are going to use again hybrids. We are defining:

Hi −Adv [A] (k) = PrHi [A wins]− 1/2

22



CHAPTER 4. ELGAMAL ENCRYPTION 4.1. DEFINITION

Hybrid H0: Challenger acts the same as the CPA seen above.

Note that:
CPA−Adv [A] (k) = |H0 −Adv [A] (k)|

Hybrid H1: Instead of c = (gs, gsymb) send c = (gy, gumb) where u
R∈ R.

Claim 4.1.3

There exists an adversary B s.t. DDH −Adv [B] (k) ≥ 1
2 |H1 −Adv [A] (k)−H0 −Adv [A] (k)|.

Proof: Define BA
(
1k, g, gx, gy, gz

)
as follows:

1. Running A on pk = gx, A sends m0,m1 ∈ G.

2. Choose b
R∈ {0, 1} and compute: c = (gy, gzmb).

3. Send c to A, obtain b′ from A.

4. If b = b′ then output 1 otherwise, output 0.

DDH −Adv [B] (j) =
1

2

∣
∣Pr
[
B
(
1k, gx, gy, gxy

)
= 1
]
− Pr

[
B
(
1k, g, gx, gy, gu

)
= 1
]∣
∣

=
1

2
|PrH0 [A wins]− PrH1 [A wins]|

Hybrid H2: Instead of c = (gy, gumb) use: c = (gy, gu).

Claim 4.1.4

|H2 −Adv [A] (k)−H1 −Adv [A] (k)| ≤ 0.

This claims follows from:

Claim 4.1.5

H2 −Adv [A] (k) = 0.

Proof: This is because the bit b is not even present in c, so the adversary can only guess it with probability 1/2.

What we have is the following claim:

Claim 4.1.6

For every PPT adversary A, exists a PPT B such that: CPA−Adv [A] (k) ≤ 2DDH−Adv [B] (k). Thus, if DDH
holds ⇒ ElGamal is CPA-Secure.
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Chapter 5

Matrices

5.1 DDH in matrix form

Note that DDH means:

(
g gx

gy gxy

)

∼=
(
g gx

gy gu

)

.

Or in different notation:

g





1 x
y xy





∼= g





1 x
y u





Note that the rand of the first matrix

(
1 x
y xy

)

is 1. While the second one is 2 (except rarely, probability1/q).

Claim 5.1.1

Assuming DDH, If A
R∈ Rk1

(
Z

2×2
q

)
; B

R∈ Rk2
(
Z

2×2
q

)
then gA ∼= gB.

31/03/2015

Remarks 5.1.2 The notation Rki
(
Z2×2

q

)
means a 2× 2 matrix of rank i over a the ring Zq.

Note that the DDH matrices are of a specific form, why is it enough that we cannot distinguish between them
means that we cannot distinguish between rank 1 and rank 2 matrices?

Claim 5.1.3

Let A ∈ Z
n×m
1 ; L

R∈ Rkn
(
Zn×n

q

)
; R

R∈ Rkm (Zm×m). Then: B = L·A·R is uniform in Rks
(
Zn×m

q

)
with s = Rk (A).

Let D be a the distribution of matrices

(
1 x
y xy

)

and let U be the distribution

(
1 x
y u

)

. We are getting gX where

X is from either D or U .

We will generate L,R
R∈ Rk2

(
Z2×2

q

)
and calculate: gL·X·R then we have that: gL·D·R is uniform in Rk1 but gL·U·R

is (almost) uniform in Rk2.

Claim 5.1.4

Let A
R∈ Rkd1

(
Zn×m

q

)
, B

R∈ Rkd2

(
Zn×m

q

)
with 1 ≤ d1, d2 ≤ min (n,m) then gA ∼= gB assuming DDH.

Remarks 5.1.5 Note that the case of d1 = 1 and d2 = 2 is a direct result form the last claim just choose
L = Rk2

(
Z2×n

q

)
and R = Rk2

(
Zm×2

q

)
. And the same proof will work.

Claim 5.1.6

Let A ∈ Zn×m
q ⇒ A is full rank w.p. ≥ 1− 1

(q−1) .

25
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Chapter 6

CCA Security

6.1 Introduction

Chosen Ciphertext Attach(CCA) is allowing the adversary to interact with the decryption algorithm, not only
the encryption (like in CPA). We allow the adversary to encrypt messages he selects and run the decryption on
them. It doesn’t seem like a great help, but maybe if the adversary creates illegal messages he can learn from them
something.
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Challenger Adversary

Generates:
(sk, pk)← KeyGen

(
1k
)

pk

c(i)

Calculates:
ρ(i) ← Decsk

(
c(i)
)

ρ(i)

Repeat

Chooses: m0,m1 ∈Mk

m0,m1

Choose at random: b
R∈ {0, 1}

c∗ = Encpk (mb)

c∗

b′

Adversary wins if b′ = b

CCA1-Security

There is also a second notion, called CCA2 where we allowed to query the decryption also after receiving c∗ (without
allowing to query c∗).
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CHAPTER 6. CCA SECURITY 6.1. INTRODUCTION

Challenger Adversary

Generates:
(sk, pk)← KeyGen

(
1k
)

pk

c(i)

Calculates:
ρ(i) ← Decsk

(
c(i)
)

ρ(i)

Repeat

Chooses: m0,m1 ∈Mk

m0,m1

Choose at random: b
R∈ {0, 1}

c∗ = Encpk (mb)

c∗

c(i)

Calculates:
ρ(i) ← Decsk

(
c(i)
)

ρ(i)

Repeat

b′

Adversary wins if b′ = b

CCA2-Security

PExample 6.1.1 () ElGamal is not CCA2 secure.
Recall that sk = s; pk = gs. Enc (m) = (gr, gr·s ·m).
Assume that the adversary got from the challenger: c∗ = (gr, gw). The adversary can calculate: c′ = (cr, gw · g) in
the post-challenge queries phase. And then the challenger will answer because c′ 6= c∗ and we will get:

gw · g · g−rs = gw−rs · g = mb · g
What we did here, called malleability, we got one message and transformed it to another message. This seems like
a bad feature, but it is actually very useful in homomorphic encryption for example.
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6.2 Cramer-Shoup (lite) - CCA1

The scheme works as follows:

• KeyGen
(
1k
)
: Choose 0 6= a

R∈ Z2
q; s, t

R∈ Z2
q . And calculate:

yT = aT [s‖t]

The secret key is: sk = [s‖t] and the public key is: pk =
(

ga
T

, gy
T
)

.

• Encpk (m): Choose r
R∈ Zm

q and calculate:

c =
(

gra
T

, gr·y
T

[m‖1]
)

Remarks 6.2.1 It is not a matrix product, between gr·y
T

and [m‖1]. It is an element wise product. gA ·gB = gA+B.

• Decsk

(

gb
T

, gz
T
)

: We calculate:gz
T−bT [s‖t] and check whether it looks like [m‖1]. If so, output m otherwise

output ⊥.

Note that if we are trying to decrypt legal cipher text, then what we learn on the decryption is aT · t and not t
completely.

What is the test that is done in the decryption? We are checking whether: gz2−b
T ·t = g0. Meaning ⇐⇒ z2 = bT · t

(we know aT · t = y2 ).

Note that if bT 6= raT , then: Prt

[

z2 = bT · t
]

= 1/q. Note that even if we know y2 we cannot get all the information

regarding t. And the same thing holds for s.

Claim 6.2.2

CS-Lite is CCA1 secure under DDH.

Proof: We define:

PrHi [A wins]− 1

2
= Hi −Adv [A]

Hybrid 0: Normal CCA1 security game.

|H0 −Adv [A]| = CCA1−Adv [A]

c∗ =
(

ga
T ·r, gy

T ·r [m‖1]
)

=
(

ga
T ·r, ga

T [s‖t]·r [m‖1]
)

(b∗ = ra)

=
(

gb
∗T

, gb
∗T [s‖t] [m‖1]

)

Note that all that needed in order to simulate the hybrid H0 is: ga
T

, [s‖t], gb∗T

.

Hybrid 1: Choose:

[
aT

b∗T

]
R∈ Rk2

(
Z2×2

q

)
.

Claim 6.2.3

|H1−Adv [A]−H0−Adv [A]| < 2Rank−Adv [B].

Note that: we have g





aT

b∗T





and we want to distinguish between rank 1 and full rank, and we know that it is hard
to distinguish between them in the exponent. Meaning that there is something that the adversary cannot do, but
given the hardness of DDH, we can do that to him.
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Hybrid 2: In the decryption queries, we are getting
(

gb
T

, gz
T
)

. We check if: bT = raT for some r (we assume

here that the challenger is not computational efficient, so if we want to prove something, it has to be statistical
argument). If no output ⊥ if yes, proceed as before.

In fact we are limiting the adversary to valid ciphertexts.

Claim 6.2.4

|H2−Adv [A]−H1−Adv [A]| ≤ t
q (where t is the number of queries made by the adversary).

Given aT , yT and we get
(

bT , zT
)

, we ask bT · t = z2 and:

Pr
{t:aT ·t=y2}

[

bT · t = z2

]

= 1/q

Claim 6.2.5

H2−Adv [A] = 0.

02/04/2015
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Chapter 7

Leftover Hash Lemma

7.1 Introduction

Assume we have a random variable X with arbitrary distribution function. We want to apply some function on X
and get another random variable which is uniform distributed.

Definition 7.1.1 (Min-Entropy) The Min-Entropy of a random variable X is:

H∞ (X) = − log
(

max
x

Pr [X = x]
)

High Min-Entropy means that we have high randomness in the random variable that we can extract.

We also want to define a 2-Universal hash functions:

Definition 7.1.2 (2-Universal) Consider a distribution H ⊆ (S → T ) (functions from S → T ). H is 2-universal
if:

∀x, y ∈ S, x 6= y Pr
h
R
∈H

[h (x) = h (y)] = 1/|T |

Now we can define the Leftover Hash Lemma:

Lemma 7.1.3 (Leftover Hash Lemma (LHL))

Let ε > 0, H is 2-universal, X is a random variable supported on S s.t. H∞ (X) ≥ log |T | + 2 log (1/ε), then: for
every adversary A (even computationally unbounded) it maintains:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

h
R∈ H

x ∼ X

[A (h, h (x)) = 1]− Pr

h
R∈ H

u
R∈ T

[A (h, u) = 1]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ ε

Remarks 7.1.4 A can know the distribution of X , it doesn’t matter.

The left over hash lemma means that a 2-universal is a good randomness extractor.

This is all information theoretic, we haven’t talk about any computational efficiency nor asymptotic analysis.

7.2 Construction of a 2-universal

How can we get such family of 2-universal functions?
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Let’s define a family of hash functions, this is an important example.

For all a ∈ Zn
q define ha : {0, 1}n → Zq as follows:

ha (x) = 〈a, x〉

We define H to be uniform over ha (meaning that we are picking a ∈ Zn
q uniformly, and returning ha).

Now, let x 6= y ∈ {0, 1}n, we have:

Pr
a
R
∈Zn

q

[
〈a, x〉 =

〈
a, y
〉]

= Pr
a
R
∈Zq

[〈
a, x− y

〉
= 0
]

We know that x 6= y there is at least one coordinate, denoted by i∗, where: xi∗ 6= yi∗ . Hence:

= Pr



ai∗ (xi∗ − yi∗)
︸ ︷︷ ︸

uniform

+
∑

i6=i∗

ai (xi − yi) = 0



 = 1/q

Thus, if we have a random variable X s.t.: H∞ (X) ≥ log q + 2 log (1/ε) (and if 1/ε is negligible) then:

(a, 〈a, x〉) ≡ (a, u)

7.3 Leftover hash lemma with side information

What if someone gives us some information about X , can we still apply the leftover hash lemma? The answer is
yes:

Lemma 7.3.1 (LHL with side information)

Let H be 2-universal, and let X s.t. H∞ (X) ≥ log |T |+ 2 log (1/ε) + λ then: for every L (x; r) → {0, 1}λ for every
adversary A (even computationally unbounded) it maintains:

|Pr [A (h, h (x) , r, L (x; r)) = 1]− Pr [A (h, u, r, L (x; r) = 1)]| ≤ ε
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Chapter 8

Leakage Resilient Encryption

8.1 Definition

We are now allowing the adversary to leak λ bits calculated on the secret key. We want to define λ-Leakage
Resilience:
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Challenger Adversary

Generates:
(sk, pk)← KeyGen

(
1k
)

pk

L : Sk → {0, 1}λ

L (sk)

Chooses: m0,m1 ∈Mk

m0,m1

Choose at random: β
R∈ {0, 1}

c∗ = Encpk (mβ)

c∗

β′

Adversary wins if β′ = β

λ-Leakage Resilience

We do assume that L is polynomial time.

8.2 Existence of λ-Leakage-Resilient

Lemma 8.2.1

∀λ (k) = poly (k) there exists a scheme Eλ s.t. Eλ is λ-Leakage-Resilient under DDH.

Proof: We define the scheme as follows:

• KeyGen
(
1k
)
: Choose: s

R∈ {0, 1}n with n = [2 log q + 2k + λ (k)]. Choose ga ∈ Gn, and set: gy = g〈a,s〉. Set
sk = s and pk = (ga, gy).

• Encpk (m): The message space is m ∈ G. We have: pk = (ga, gy). We choose r
R∈ Zq and return: c =

(gra, gr·y ·m).

• Decsk
(
gb, gz

)
: We have: sk = s so we calculate:

gz · g−〈b,s〉

Note that a cipher text in this scheme looks like:

c = (gra, gr·y ·m)

=
(

gra, g〈ra,s〉 ·m
)

=
(

gb, g〈b,s〉 ·m
)
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For b = ra. Note that for any value of b, the cypher text will still be decrypt-able even if b 6= ra.

Let A be a λ-Leakage Adversary, and we are going to define hybrids:

Hybrid H0: The standard leakage game:

Leakage−Adv [A] = |PrH0 [A wins]− 1/2|

Hybrid H1: We now set:

c∗ =
(

gb, g〈b,s〉mβ

)

For gb
R∈ Gn.

Note that if the adversary can distinguish between H1 and H0 he can break DDH, as he can distinguish between
(ga, gra) and

(
ga, gb

)
for uniform b.

Meaning that there exists an adversary B s.t.:

Rank−Adv [B] = |PrH0 [A wins]− PrH1 [Awins]|

How does B
(
1k, gM

)
work?

1. Parse gM as
[
ga‖gb

]
.

2. Sample s ∈ {0, 1}n.

3. Run A on pk =
(
ga, g〈a,s〉

)
.

4. A sends L, sends back L (s).

5. Get m0,m1, sample β and compute c∗ =
(
gb, g〈b,s〉mβ

)
.

6. Get β′ and return 1 if β′ = β.

Note that the probability that B return 1 in the low rank case is PrH0 [Awins], while in the full rank case it is (close
to): PrH1 [A wins]. So if A can win H0 it can also win H1 (otherwise it distinguish between low and full rank).

But note that g〈b,s〉, according to the LHL, is looks uniform! How can we use it? We are going to define yet another
hybrid:

Hybrid H2: Now, we change: c∗ =
(
gb, gu ·mβ

)
for uniform u

R∈ Zq. Note that in H2 the probability of winning
is exactly 1/2. It remains to show that:

|PrH1 [A wins]− PrH2 [A wins]| ≤ 2−k

Which of course is negligible in the security parameter. Note that from the LHL, for every adversary C (even
computationally unbounded):

∣
∣
∣Pr
[

C
(

b, 〈b, s〉 , a, L̃ (s; a)
)

= 1
]

− Pr
[

C
(

b, u, a, L̃ (s; a)
)

= 1
]∣
∣
∣ ≤ 2−k

With L̃ (s; a) = (〈a, s〉 , L (s)).

We want to show an C s.t. it gives exactly PrH1 [A wins] and PrH0 [A wins]. We define C (b, z, a, y, ℓ) as follows:

1. Simulate A to get m0,m1, sample β.

2. Send c∗ =
(
gb, gz ·mβ

)
.

3. Get β′ and output 1 if β = β′

14/04/2015
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Chapter 9

Digital Signature Scheme

9.1 The Scenario

We again have the entities Alice and Bob, but now, we don’t care about the secrecy of the content of the message,
but we want to verify that the message that Alice sent to Bob was really written by Alice and not by a malicious
entity.

A digital signature scheme is a cryptographic primitive that allows us to solve this problem.

Alice generate a signature keys, sk (Alice’s secret key) and vk (the verification key). Alice will send bob m and a
signature σ that is generated using the secret key, and Bob will be able to verify it using the verification key.

Definition 9.1.1 (Digital Signature Scheme) A Digital Signature Scheme is a tuple of three algorithms:

1. Gen
(
1k
)
→ (sk, vk).

2. Signsk
(
1k,m

)
→ σ (Message space {0, 1}∗)

3. Vervk
(
1k,m, σ

)
→ 0/1

Correctness:
∀m Pr

(sk,vk)←Gen(1k)
[Vervk (m, Signsk (m)) 6= 1] = negl (k)

Remarks 9.1.2 Unlike encryption, we might have Sign and Ver being deterministic algorithms.

So, in our game, Alice is going to generate sk and vk and publish vk on her website for example. And then Alice
will send a message to bob and sign it (meaning that she will actually send the tuple (m,σ) where σ is the output
of Signsk

(
1k,m

)
). Then Bob will verify the message using Vervk

(
1k,m, σ

)
where vk is the same verification Alice

published in advanced.

9.2 Security Game

We are going to define security as follows:
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Challenger Adversary

Generates:
(sk, vk)← Gen

(
1k
)

vk

m(i)

Calculates:
σ(i) ← Signsk

(
m(i)

)

σ(i)

Repeat

m∗, σ∗

Adversary wins if:
Vervk (m

∗, σ∗) = 1
And m∗ /∈ m(i)

EU-CMA

We define the advantage:
EU− CMA−Adv [A] = Pr [A wins]

It turns out that we can construct a signature scheme from only OWF (unlike public key encryption).

9.3 Bilinear Maps

Definition 9.3.1 A bilinear map is a function e : G×G→ H (G is a group of order q and H is a group) with the
properties:

1. Bilinear:
∀x, y ∈ Zq e (gx, gy) = e (g, gxy) = e (g, g)

xy

2. Non-degenerate:
e (g, g) 6= 1H

We are interested in groups that have bilinear maps, but we still want groups that Discrete Log is still hard on
them.

So what properties can we expect from G?

• DL is hard (Note that if DL is easy on H then you can also solve DL on G by simply looking at e (g, gx) =
e (g, g)

x
). We can, and want to have that property.

• DDH - Is (g, gx, gy, gxy) ∼= (g, gx, gy, gu)? Note that we cannot expect to have DDH on such groups as we can
check:

e (gx, gy) = e (g, gxy)
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But note that with noticeable probability:

e (gx, gy) = e (g, g)
xy 6= e (g, g)

u
= e (g, gu)

• CDH - Given (g, gx, gy) can we come up with gxy? We want groups such that CDH will be hard. Meaning
that we will be able to calculate the inverse of e (described in the next bullet).

• Inverse: e (g, g)x → gx. We want groups such that the inverse is hard. So CDH won’t break on G.

• BDDH (Bilinear DDH): Is (g, gx, gy, gz, e (g, g)
xyz

) ∼= (g, gx, gy, gz, e (g, g)
u
)

• Rank: gA ∼= gB: A ∈ Rk2
(
Z

n×m
q

)
, B ∈ Rk>2

(
Z

n×m
q

)
.

What is most likely to be hard by decreasing order:

1. DL on target group.

2. Inverse.

3. CDH (Note that if you solve CDH you can solve BDDH).

4. BDDH/Rank.

It is not known which one is harder BDDH or RANK.

9.4 Construction of Digital Signature Scheme from Bilinear Maps

A very high level idea:

• The message is going to be gµ

• Keys: sk = s, vk = gs.

• Sign: gµ → gµs.

• Verification: e (gµ, gs) = e (g, g)
µs

= e (g, gµs)

Note that in this way, if the adversary actually know µ than he can choose µ∗, and calculate gµ
∗

and then raise the
vk = gs to µ∗ and get gsµ

∗

. How can we solve this? Well we are going to cheat a little bit, and use random oracles.

Definition 9.4.1 (Random Oracle) A random function O : {0, 1}∗ → G, that everyone in the world has access
to. For the sake of formality, we need to have the security parameter, so actually the function is of the form:
{0, 1}∗ ×N→ ⋃

k

Gk.

The construction:

• GenO
(
1k
)
: s

R∈ Zq. sk = s; vk = gs.

• SignOsk (m): gµ = O (m). Output: σ = gµ·s (Note that we do not have µ at any time, only gµ).

• VerOvk (m,σ): vk = gs, σ = gη, gµ = O (m). Check:

e (gµ, gs)
?
= e (g, gη)

Why is it secure? Now, the adversary can also query the random oracle. But the only thing he can do with it
is sending queries and receiving the response. But we can simulate the random oracle in the challenger, just output
random values for every new query and store the solution in a table. If we query the same message multiple times,
returned the stored value.

So, let us prove security:

Let A be an adversary agains out scheme that runs in time t (k). We will of course use hybrids!
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Hybrid H0: Generate s, gs and send vk = gs to A. In order to handle A queries to O, the challenger will maintain
a list L, whenever A queries O (x) the challenger will decide as follows:

• If x ∈ L, reply same as before.

• Otherwise, µx

R∈ Zq and add (x, µx, g
µx) to the list L. Return gµx .

Note that:
PrH0 [A wins] = EU− CMA−Adv [A]

Hybrid H1: Change response to sign queries: m(i): find
(
m(i), µi, g

µi
)

in the list, return σ = (gs)
µi .

PrH1 [A wins] = PrH0 = [A wins]

Note that now, the challenger doesn’t need to know s, he can use gs and raise it to µi.

We need to know what is the oracle query corresponding to µ∗ but we don’t really know which one is it.

Hybrid H2: The challenger generates gs and gµ
∗

(the challenger doesn’t know µ∗ nor s). The challenger samples

i∗
R∈ [t], given the ith oracle query xi :

1. If (xi, µ, g
µ) ∈ L → As before.

2. If i 6= i∗ → As before.

3. If i = i∗ and xi is “fresh” return gµ
∗

, insert to the list
(
xi,−, gµ

∗
)

(we don’t know the µ∗)

Note that now, we cannot sign for i∗ because we don’t know the signing key nor µ∗. So if the adversary submitted
xi for signing then he caught us. And we abort.

Claim 9.4.2

PrH2

[
A wins ∧ O (m∗) = gµ

∗
]
≥ 1/t · PrH1 [A wins].

Note that it seems like a problem, because when he gets an abort, he learns something about i∗. But when the
adversary ask for signing then he wouldn’t forge that value according to the game, so he couldn’t lie and say that
he wanted to forge that value. Proof: Note that:

PrH1 [A wins] = PrH1 [A wins ∧m∗ was not submitted for signing]

=

t∑

i=1

PrH1

[

A wins ∧m∗ /∈
{

m(i)
}

∧ O (m∗) was the ith oracle query
]

=

t∑

i=1

1

t
PrH2

[

A wins ∧ O (m∗) = gµ
∗ ∧ O (m∗) was the i∗th query

]

=
1

t
PrH2

[

A wins ∧O (m∗) = gµ
∗

]

But note, that if we can win in hybrid H2 we can also solve the Computational Diffie Hellman problem: by letting
BA

(
g, gs, gµ

∗
)

plays the challenger of H2 with A and output σ∗.
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KDM-Security

10.1 Introduction

We know have the scenario that Alice has a secret key skA associated with a public key pkA and bob has skB
associated with pkB.

But they want to share the secret keys with each other:

Alice Bob

Has: skA Has: skB

EncpkB
(skA)

Encpka
(skB)

KDM-Security

It seems like it suppose to be secure, if the scheme is secure why would it be able to get information from encryption
of the secret key?

A more typical idea is that alice has an hard-drive and it is encrypted with a public key, but also stores the secret
key, encrypted.

But apparently, CPA security does not imply KDM-Security immediately.

10.2 Definition

Let E = (KeyGen,Enc,Dec) be an encryption scheme. Let Sk be the sk space of E and Mk the message space.

Let F = {Fk}k where: Fk ⊂ Sk →Mk (functions on theg secret key).

We say that an encryption is (F , 1)-KDM secure if:
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Challenger Adversary

Generates:
(sk, pk)← KeyGen

(
1k
)

Samples: b
R∈ {0, 1}

pk

f (i) ∈ Fk

If b = 0: C(i) = Encpk(fi(sk))
If b = 1: C(i) = Encpk(0)

c(i)

Repeat

b∗

Adversary wins if: b∗ = b

KDM Security

Remarks 10.2.1 We denote it (F , 1)-KDM because there is only one encryption scheme, and in a more general
case (for example the Alice Bob scenario from above), there might be more than one encryption scheme in use.

10.3 Construction

10.3.1 ElGamal

Let’s start with ElGamal, Recall that we have the sk = s and pk = gs and: Enc (gµ) = (gr, grs · gµ).
Now assume that we have the fuctnio class:

F =
{
fga,gb = gas+b

}

ga,gb

We can prove that ElGamal is secure with respect to F . We won’t give a proof but note that:

Enc
(
fga,gb (s)

)
=

(
gr, grsgas+b

)

=
(

gr, g(r+a)·s · gb
)

Denote r′ = r + a and we get:

Enc
(
fga,gb (s)

)
=

(

gr
′−a, gr

′sgb
)

So, encryption of a linear function of the secret key, seems as above.

Note that now we have: (

g, gs, ga, gb,
(

gr
′−a, gr

′s · gb
))
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And from DDH: (

g, gs, ga, gb,
(

gr
′−a, gr

′s · gb
))

∼=
(

g, gs, ga, gb,
(

gr
′−a, gr · gb

))

So ElGamal is secure against F -KDM attack.

10.3.2 Construction

The construction is going to be similar to the leakage resilient:

• KeyGen
(
1k
)
:

s
R∈ {0, 1}n; n = log q + 2k

ga
R∈ Gn

gy = g〈a,s〉.
Set sk = s and pk = (ga, gy).

• Encpk (m):

m = gµ and pk = (ga, gy). We sample r
R∈ Zq and calculate:

c = (gra, gr·ygµ)

• Decsk (c):
We have sk = s and c =

(
gb, gz

)
. We calculate: gz · g−〈b,s〉.

The function class that we are going to talk about is:

F =
{

fgα,gβ (s) = g〈a,s〉+β
}

gα,gβ

We want to prove that this scheme is secure against F -KDM attacks.

Let A be (F , 1)-KDM adversary against the scheme, A runs in time t.

We define the following hybrids:

Hybrid H0: The (F , 1)-KDM game.

gα
(i)

, gβ
(i)

. Assume for now that b = 0 then:

c(i) =
(

gr
(i)·a, gr

(i)·y · g〈α(i),s〉gβ(i)
)

=
(

gr
(i)·a, gr

(i)·〈a,s〉 · g〈α(i),s〉gβ(i)
)

Denote: b(i) = r(i)a and we have:

c(i) =
(

gb
(i)

, g〈b(i),s〉 · g〈α(i),s〉 · gβ(i)
)

Hybrid H1: Now, we choose: gb
(i) ∈ Gn . In hybrid H0 we had: g

















aT

r1aT

...
rtaT

















and now we have g



















aT

b1

...
bt



















, note that the
first one is a matrix of rank 1, while the second is with high probability full rank. And we know that:

g

















aT

r1aT

...
rtaT

















∼= g



















aT

b1

...
bt


















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Hybrid H2: We have:

c(i) =
(

gb
(i)

, g〈b(i)+α(i),s〉, gβ(i)
)

=
(

gb
′(i)−α(i)

, g〈b′(i),s〉 · gβ(i)
)

Where b′(i) = b(i) + α(i).

Up until now, we have not change a thing. The difference in H2 is that we going to replace: gb
′(i)

= gr
(i)·a (it

doesn’t matter if it is the same r(i) from H0 but for simplicity consider fresh randomness).

And now:

c(i) =
(

gr(i)a−α
(i)

, gr
(i)〈a,s〉 · gβ(i)

)

=
(

gr(i)a−α
(i)

, gr
(i)y · gβ(i)

)

Now, in the view of the adversary, we have 〈a, s〉 in every cipher text, but it alway 〈a, s〉 = y.

Hybrid H3: Instead of y = 〈a, s〉 (which is not uniform, but statistically close to uniform) we generate y
R∈ Zq

uniformly. So, now the public key is (ga, gy) and the cipher text looks like:

(

gr
(i)a−α(i)

, gr
(i)y · gβ(i)

)

We are almost done.

We are now going to denote: d =

[
a
y

]

, we define pk = gd and now:

c(i) = gr
(i)d · g





−α(i)

β(i)





= gd
′(i) · g





−α(i)

β(i)





Where: d′(i) = r(i)d.

Hybrid H4: We are now changing: gd
′(i) R∈ Gn+1. And now c(i) will be uniform, and we cannot win with

probability better than 1/2.
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Quadratic Residue Assumption

11.1 Number theory backgraound

First, we need a short overview of some required number theory:

Consider Zp as the set of all the integers modulo p, for some prime number p. We denote by Z∗p the multiplicative
group in Zp.

Some facts regarding Z∗p:

• Z∗p = Zp\ {0}.

•
∣
∣Z∗p

∣
∣ = p− 1.

We now want to define a sub-group of Z∗p called the quadratic residues group:

Definition 11.1.1 For any prime number p, we define the quadratic residues group modulo p as:

QRp =
{
x2 | x ∈ Z

∗
p

}

Some facts regarding QRp:

•
∣
∣QRp

∣
∣ = p−1

2 .

• If p ≡ 3 ( mod 4) then −1 /∈ QRp.

Definition 11.1.2 For any prime number p and a natural number x the Legendre symbol
(

x
p

)

is defined as

follows:
(
x

p

)

=







1 x ∈ QRp

−1 x ∈ Z∗p\QRp

0 x /∈ Zp

Some facts regarding the Legender symbol:

•
(

x
p

)

= x
p−1
2 .

•
(

ab
p

)

=
(

a
p

)(
b
p

)

.

•
(

a−1

p

)

=
(

a
p

)

.

In a similar way, consider ZN for an integer N . Mostly we will consider the case in which N is a Blum Integer.

Definition 11.1.3 We call an integer N a Blum Integer if N = pq and p ≡ q ≡ 3 ( mod 4).
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Some facts regarding Blum Integers:

• Z
∗
N = {x ∈ ZN | p ∤ x ∧ q ∤ x}.

• |Z∗n| = ϕ (N) = (p− 1) (q − 1), where ϕ is the Euler totient function.

Definition 11.1.4 For any integer N , we define the quadratic residues group modulo N as:

QRN =
{
x2 | x ∈ Z

∗
N

}

Some facts regarding QRN for a Blum Integer N :

• (−1) /∈ QRN .

• |QRN | =
|Z∗

N |
4 = (p−1)(q−1)

4 .

Definition 11.1.5 Let x,N be integers and let N =
∏k

i=1 (pi)
αi be the prime factorization of N . We define the

Jacobi symbol
(

x
N

)
as follows:

( x

N

)

=

k∏

i=1

(
x

pi

)αi

where
(

x
pi

)

for i = 1, . . . , k are Legendre symbols.

Some facts regarding Jacobi symbols:

•
(

x
N

)
can be efficiently computed. That is, there exists an algorithm that on input (x,N) outputs

(
x
N

)
and

runs in polynomial time in the length of the bit representation of (x,N).

• If x ∈ QRN then
(

x
N

)
= 1.

• If N is a Blum Integer then
(
−1
N

)
= 1.

Let N be an integer. We define the multiplicative group JN as:

JN =
{

x ∈ Z
∗
N |

( x

N

)

= 1
}

If N is a Blum Integer, then:

JN =
{

(−1)b x2 | b ∈ {0, 1} , x ∈ Z
∗
N

}

11.2 The Assumption

Definition 11.2.1 Let p, q be random k-bit primes. Let N be a Blum Integer, r
R∈ Z∗N , s

R∈ JN .
The QR Problem (for Blum Integers) is distinguishing

(
N, r2

)
from (N, s).

Definition 11.2.2 The QR Assumption is :

(
N, r2

) ∼= (N, s)

where ∼= means computational indistinguishability.

We usually use the QR assumption with respect to Blum Integers.
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11.3 PKE from the QR assumption

11.3.1 Goldwasser-Micali crypto-system

We define the Goldwasser-Micali (GM) crypto-system as follows:

• KeyGen
(
1k
)
: Sample p, q two random k-bit Blum Primes (i.e. p ≡ q ≡ 4 ( mod 4). And denote N = pq.

Output: pk = N , sk = (p, q).

• The message space isM = {0, 1}.

• Encpk (m): Sample x
R∈ Z

∗
N (recall that pk = N), and output: c = (−1)m x2.

• Decsk (c): Use p, q to check if c ∈ QRN . If it is, output 0, otherwise output 1.

We can prove the security of the GM crypto-system based on the QR assumption.

11.3.2 Cocks crypto-system

We can also define another crypto-system, due to Cocks:

• KeyGen
(
1k
)
: Sample N , a k-bit Blum Integer. Sample r

R∈ Z∗N , and denote R = r2. Output pk = (N,R),
sk = r (We can also think of N as some publicly agreed integer prior to running of KeyGen).

• The message space isM = {0, 1}.

• Encpk (m): Sample t
R∈ Z∗N and output c =

(
R
t + t,

(
t
N

)
(−1)m

)
, where

(
t
N

)
is the Jacobi symbol (We denote:

fR (t) = R
t + t).

• Decsk (c): Denote c =
(

y, (−1)b
)

. Output m such that:

(−1)m = (−1)b
(
y + 2r

N

)

Theorem 11.3.1

The Cocks crypto-system is correct, and is secure assuming the QR assumption.

Proof: Correctness:
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Decsk

((
R

t
+ t,

(
t

N

)

(−1)m
))

=

(
t

N

)

(−1)m
(

R
t + t+ 2r

N

)

=

(
t

N

)

(−1)m
(
t−1

N

)(
R+ 2rt+ t2

N

)

= (−1)m
(

(r + t)2

N

)

= (−1)m

Security:

The proof idea is to consider an Hybrid in which R is chosen such that R ∈ JN\QRN , and note that in this hybrid
the cyphertext is independent of m.

11.4 Identity Based Encryption

11.4.1 Definition

Suppose we wish to encrypt messages to many parties. Using PKE we have to run KeyGen for every party that
wishes to receive messages. We now consider an alternative called Identity Based Encryption (IBE).

Definition 11.4.1 We assume each party has a unique identifier in {0, 1}∗. An IBE is defined using four algorithms:
(Setup,KeyGen,Enc,Dec):

• Setup
(
1k
)
→ (pp,msk). pp is an abbreviation of “public parameters”, and msk is an abbreviation of “master

secret key”.

• KeyGen
(
1k,msk, ID

)
→ skID.

• Enc
(
1k, pp, ID,m

)
→ c.

• Dec
(
1k, skID, c

)
→ m.

Correctness is defined in the usual manner.

11.4.2 Security

Let (Setup,KeyGen,Enc,Dec) be an IBE. We define the security of the IBE using the following security game
between the challenger and an adversary:
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Challenger Adversary

Generates:
(pp,msk)← Setup

(
1k
)

pp

ID(i)

Calculates:
sk(i) ← KeyGen

(

1k,msk, ID(i)
)

sk(i)

Repeat

Chooses: ID∗,m0,m1 ∈Mk

ID∗,m0,m1

Choose at random: b
R∈ {0, 1}

c∗ = Enc (pp, ID∗,mb)

c∗

ID(i)

Calculates:
sk(i) ← KeyGen

(

1k,msk, ID(i)
)

sk(i)

Repeat

b′

Adversary wins if b′ = b

IBE-Security

We say that adversary A wins the game when b = b′ and ID∗ is not one of the IDs sent before or after the challenge.
We define the advantage as:

IBE−Adv [A] =

∣
∣
∣
∣
Pr [A wins]− 1

2

∣
∣
∣
∣

We say that an IBE is secure if for every PPT adversary A, IBE−Adv [A] is a negligible function in k. 28/04/2015
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11.4.3 Construction from QR assumption

Consider the Cocks crypto-system, we are going to tweak it so it will construct an IBE crypto-system.

The public parameters are going to be: pp = N and msk = (p, q). Note that using the master-secret-key, we can
evaluate the square root of an element (We check if it is a square modulo p and modulo q, if it is then it is also
square modulo N).

We would like to have a random oracle: O : {0, 1}∗ → QRN . But we don’t really know how (even heuristic) to
satisfy the operation of O. Meaning that we don’t know how to generate element QRN without knowing the square
root. But one thing we can do is to have O : {0, 1}∗ → JN . But this is not good enough for the Cocks encryption
scheme. So how can we solve it?

We know that in the case of Blum Integer, that every number with Jacobi Symbol 1 is of the form (−1)b x2. We
are going to use this fact.

So, how is this crypto-system going to work?

• Setup
(
1k
)
: (p, q,N)← BlumGen

(
1k
)
. Return: pp = N ; msk = (p, q).

• KeyGen (msk, ID): msk = (p, q), calculate: R = O (ID). If R ∈ QRN then output r =
√
R, otherwise output

r =
√
−R.

• EncO (pp, ID,m): pp = N , R = O (ID). Choose t1, t2
R∈ Z∗N and return:

c =

(

fR (t1) ,

(
t1
N

)

(−1)m , f−R (t2) ,

(
t2
N

)

(−1)m
)

• DecO (ID, skID, (t1, (−1)α1 , t2, (−1)α2)): sk = r. If r2 = R then (−1)α1
(
y1+2r

N

)
otherwise: r2 = −R and then:

(−1)α1
(
y2+2r

N

)
.

11.4.4 Security proof

Again, we are going to build hybrids:

Hybrid H0:

Normal IBE game, only thatO is simulated using a list. The entries are going to look something like:
(

ID, r, b, (−1)b r2
)

.

On every query, if the ID is in the list we are going to return the same value as before, if not we are going to choose

r
R∈ Z∗N and b

R∈ {0, 1} and generate a new item in the list and return it.

Hybrid H1:

Never use (p, q), just use the list in order to know the square root.

Hybrid H2:

There is going to be a special R∗, we are going to guess a query number and put R∗ as the answer.

We want to argue here that:
Pr [A wins ∧ O (ID∗) = R∗] ≥ �

(something not negligible, divided by the running time of the adversary).

Hybrid H3:

c∗ = (fR∗ (t1) , (−1)α1 , f−R∗ (t2) , (−1)α2)

for α1, α2

R∈ {0, 1}.
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CHAPTER 11. QUADRATIC RESIDUE ASSUMPTION 11.5. YET ANOTHER PKE FROM QR

11.5 Yet another PKE from QR

(By Shafi Goldwasser and Zvika Brakerski).

Consider the following crypto-system: Let N be a Blum Integer (we don’t need to know the factorization).

• KeyGen
(
1k
)
: s

R∈ {0, 1}n. g1, . . . , gn
R∈ QRN . g0 =

∏
gsii . Return: sk = s and pk = (g0, g1, . . . , gn). Where

n = logN + 2k (going to be used in the leftover hash lemma).

• Encpk (m): Choose r
R∈
[
N · 2k

]
and take: c = (gr1, . . . , g

r
n, g

r
0 (−1)m).

Remarks 11.5.1 Recall that |QRN | = ϕ(N)
4 = (q−1)(p−1)

4 . In particular N · 2k ≫ |QRN |.

• Decsk (h1, . . . , hn, h0): calculate:

h0 ·
∏

h−sii = (−1)m

We want to show security. We define a family of hash function:

H(g1,...,gn) (s1, . . . , sn) =
∏

gsii

This is a two universal has function. And we are able to use the leftover hash lemma.

The proof is done with hybrids:

Hybrid H0:

The normal CPA game.

Hybrid H1:

Replace g0
R∈ QRN using the leftover hash lemma.

Hybrid H2:

pk = (g1, . . . , gm,−g0).
If this is the public key, then the cipher text looks like:

c = (gr1 , . . . , g
r
n, (−1)r gr0 (−1)m)

Note that: gri = g
r( mod ϕ(N)/4)
i . On the other hand: (−1)r = (−1)r( mod 2).

One thing to notice is that: gcd
(

ϕ(N)
4 , 2

)

= 1 because N is a Blum Integer then p ≡ q ≡ 3 ( mod 4).

Claim 11.5.2

Let M = s · t and gcd (s, t) = 1 then if r
R∈ [M ] then (r ( mod s) , r ( mod t)) is uniform in [s]× [t].

(Basically this is the Chinese reminder theorem).

In the bottom line (−1)r completely randomize the message, so we don’t have information in the ciphertext about
the original message.
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11.6 Decisional Composite Residuosity (DCR, Paillier)

Let N be a Blum Integer. Now, we are going to do arithmetics
(

mod N2
)
.

Z
∗
N2 = {x ∈ ZN2 | p ∤ x, q ∤ x}

|Z∗N2 | = N · ϕ (N)

Quadratic Residues only have 2 cosets, But we want more than that. So we can consider:

NR =
{
XN : x ∈ Z

∗
N2

}

|NR| = ϕ (N)

The DCR (Paillier) assumption:

NR ∼= Z∗N2 .

We have:

QRN2 =
{
x2
(

mod N2
)
| x ∈ Z

∗
N2

}
size: N · ϕ(N)/4

CR =
{
x2N

(
mod N2

)
| x ∈ Z

∗
N2

}
size: ϕ(N)/4

The DCR assumption implies: QRN2
∼= CR.

So if we have x ∈ QRN2 ⇐⇒ x = (1 +N)i r2N . (1 +N)i
(

mod N2
)
= 1 + iN .

Now assume that N = pq is a Blum Integer such that: p = 2p′ + 1 and q = 2q′ + 1 and p′, q′ are also primes.

We now want to construct an encryption-system from DCR:

• KeyGen
(
1k
)
: N ← BlumSafeGen

(
1k
)
. Let g be a generator for CR. s

R∈
[
N · 2k

]
. sk = s and pk = (N, g, gs).

• Message space: M = [N ]

• Encpk (m): We have pk = (N, g, gs). We are encrypting: (gr, (gs)
r
(1 +N)

m
).

Remarks 11.6.1 Note that (gs)
r
(1 +N)

m
is of the form (1 +N)

i
r2N and hence it is a square. Meaning that it

the Jacobi Symbol of this element is always 1.

• Decsk (h1, h2): We have sk = s. We compute: h2h
−s
1 = (1 +m ·N) and we output m.
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Chapter 12

Learning With Errors

12.1 Introduction

We are going to work with Zq =
(
Z ∩

(
− q

2 ,
q
2

])
and assume that q is a prime, but most of the stuff will also work

for q which are not primes.

The question is: how hard is to solve a set of linear equations modulo q?

Meaning we are going to have s = Zn
q and we are going to generate: ai

R∈ Zn
q and we have:

〈
ai, s

〉
= bi. We are

going to an adversary a bunch of tuples
(
ai, bi

)
.

How easy is to solve and find s? Well, very. Simply use gauss elimination.

Assume we have m samples. We can consider it in matrix form we have: sTA = bT (where A is an n×m matrix
and the i-th column of A is ai). We simply use gauss elimination and find s (Because ai are generated uniformly,
then with high probability A is going to be full ranked).

We can consider the matrix:






A

bT







Note that this is an (n+ 1)×m matrix, but now the rank is at most n because the last row is linearly dependent
in the others.

So that is easy, what can we do?

We would like to ask, what happen if we add noise. Meaning that:

bi =
〈
ai, s

〉
+ ei

Where ei is the noise. It is clear the if ei is large and uniform it hides the result completely, so it is not solvable.
But we would like to consider small noise.

But what is small with respect to Zq?

Definition 12.1.1 The absolute value of x ∈ Zq is min
{y∈Z| y≡x( mod q)}

|y|.

So now we can define what is small. But we want to ask, even if the noise is bounded. Is it going to be solvable?

Note that if the noise is q
2 we hide the message completely and there is no hope to find a solution, but what happen

if it is smaller?

Claim 12.1.2

If |ei| ≤ q/4 and m ≥ n log q + k then s is specified with probability 1− 2−k.
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Proof: Consider t 6= s. Now we have ai we want to ask what is:
〈
ai, s− t

〉
. Note that:

Pr
[∣
∣
〈
ai, s− t

〉∣
∣ < q/4

]
≤ 1/2

But note that:

〈
ai, t

〉
− bi =

〈
ai, t

〉
−
〈
ai, s

〉
− ei

=
〈
ai, t− s

〉
− ei

Note that:

∀t 6= s Pr [t survives] ≤ 2−m = q−n · 2−k

Definition 12.1.3 A distribution χ ⊆ Z is B-bounded if Pr [χ /∈ [−B,B]] = 0.

12.2 The LWE (Learning With Errors) Problem

Definition 12.2.1 Let q, n,m ∈ N. Consider a noise distribution χ ⊆ Z. For all s ∈ Zn
q define: A

R∈ Zn×m
q ,

e ⊆ χm, bT = sTA+ eT ( mod q).
The worst case LWEq,n,χ,m is the problem of finding s given A, b distributed as above.

The average case LWEq,n,k,m is the same with s
R∈ Zn

q .

Of course if we can solve the worst case we can solve the average case. But note that if we take a worst case instance

A, bT and t
R∈ Zn

q and then add tTA+ b and we randomized it again. If we are able to solve it, then by subtracting
t we will get s.

Definition 12.2.2 (Decisional version) The DLWEq,n,χ,m problem is to distinguish
(
A, bT

)
from

(
A, uT

)
where

u
R∈ Z

m
q uniformly.

Meaning that the matrix:






A

bT







is very closed to be low rank (information-theoretic-wise), but it is indistinguishable from a completely random
matrix.

In many times, m is not going to be interesting and we are going to allow the adversary as many samples as he
wants. And we denote: LWEq,n,χ, DLWEq,n,χ .

12.3 Decisional to Search

Of course the search problem seems harder, because if we can find s then we can check the decisional version. But
in some cases they are equivalent. If we can solve the decisional problem we can also solve the search problem. We
are not going to show the proof, but only the idea. We are going to see how to do that in time poly (n, q) (ideally
we wanted poly (n, log q)).

Assume that we have some A that solves DLWEq,n,χ. And assume that we can have as many samples as we want:
(a, 〈a, s〉+ e).

56



CHAPTER 12. LEARNING WITH ERRORS 12.4. NOISE DISTRIBUTION

Check if s1 = z:

Choose α
R∈ Zq and check: a′ = a+(α, 0, . . . , 0)

T
. Note that b′ = b+αz. So if we are right, it is going to be a good

LWE problem.

But if we are wrong if s1 6= z this is going to rerandomize everything (because for each column that A wants we
are going to pick random α which randomize everything).

12.4 Noise distribution

What χ should we use?

We want to use this problem for cryptography, so we want to ask what are good distribution to use.

Actually almost every distribution which is not made in particular to mess this up and that has enough entropy is
going to be hard.

But what is the common distributions?

The distribution is the discrete gaussian:

We define the probability for a value of elements in Zq is defined as:

Dαq,Z : Pr [Dαq,Z = x] ∝ e−π(
x
αq )

2

Meaning we sample the value of the gaussian in the specific value in Z and not do a rounding and integrating.

We are going to define a “distribution” such that:

Pr
[

Dαq,z /∈
[

−αq
√
k, αq

√
k
]]

≤ 2−Ω(k)

It is not really a distribution because it is not summed up to 1.

LWEq,n,α is at least 2Ω̃(
n/log(1/α))-hard so long as αq ≥ O (

√
n).

If q = 2n
ε

then it is hard as: 2n1−ε/poly log(n). If q = 2n
1−ε

then 2n
ε

. 12/05/2015

12.5 Encryption Scheme From LWE

Recall that at the second class of the semester we’ve seen the El Gamal encryption scheme. We had a generator g
and a secret key s and public key gs and the cipher text looked like: (gr, grs+µ).

We want to ask: “How can we do the same things from LWE?”.







A

bT = sTA+ eT







We now have A and bT = sTA+ eT . In the El Gamal case we had a low rank matrix in the exponent:

[
g gr

gs grs+µ

]

and it looked like full rank because the hardness of DDH (note that it is low rank for µ = 0 and full rank for µ = 1,
from DDH we couldn’t distinguish).

In LWE we are going to have A as the public key, and we are going to sample r and calculate: v = Ar and the the
last row, and we have:







A

bT = sTA+ eT









v



 = A · r
[
w
]
= bT · r/sT · v
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Note that:

bT · r =
(
sTA+ eT

)
r = sTAr + eT r

sT v = sTAr

We want: eT r to be small. In order to do so, we choose r
R∈ {0, 1}m. So, if e comes from a B bounded distribution

then we have:
∣
∣eT r

∣
∣ ≤ B ·m

So we want to choose the parameters such that:

∣
∣eT r

∣
∣ ≤ B ·m≪ q

12.5.1 Regev’s Encryption Scheme

The values of n,B are going to be chosen according to the security parameter later on.

• KeyGen
(
1k
)
: A

R∈ Zn×m
q and s

R∈ Zm
q and then we going to choose e

R∈ χm (B-bounded distribution) and

bT = sTA+ eT . We return: sk = s, pk =
(

A, bT
)

.

• Encpk (µ): We generate r
R∈ {0, 1}m, and calculate v = A ·r and w = bT ·r+µ ⌈q/2⌋. And we return: c = (v, w).

• Decsk (v, w): Recall that sk = s, we calculate: |w − st · v| < q/4, If yes we return 0, otherwise we return 1.

Correctness:

Note that:
w − st · v = bT r + µ ⌈q/2⌋ − sT · v = eT · r + µ ⌈q/2⌋

Now, If µ = 0 then: w− st · v = eT · r and it is much smaller than: q/4 If the message µ = 1 then we are going to be
either very close to q/2 or −q/2, either way we are going to have large absolute value and get that the message is 1.

Note that this work with probability 1 in the case that
∣
∣eT r

∣
∣ ≤ B ·m≪ q.

What is m? Again, we will show that later on.

Security:

Hybrid H0: The CPA game.

We are sending A, bT and (v, w).

Hybrid H1: Choose bT
R∈ Zm

q . Note that if adversary succeeds differently between H0 and H1 then he breaks
LWE. Hence H0

∼= H1 due to the LWE assumption.

Now, for notation define:

Â =







A

bT







Now we can consider the ciphertext as:
c = Â · r + µ

where:

µ =








0
...
0

µq/2







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Note that
(

Â, Âr
)

is indistinguishable from uniform from the leftover hash lemma, that is:

(

Â, Âr
)

≡
(

Â, U
)

So, in order to actually use the LHL we need: m = (n+ 1) log q + 2k . So we are ready for our next hybrid:

Hybrid H2: Replace Â · r with U . From the LHL H2 is indistinguishable from H1. But now in H2 the
message is completely masked. Note that this is not CCA2-secure scheme, as we can simply add small noise
to the w element, meaning that we get a different ciphertext for the same message.

Note that it is not CCA1-secure as well! We can choose w = 0 and then choose:

v =








q/2
0
...
0








And we will learn the cipher the first bit of the secret key, and we can repeat for every bit and learn the secret key
completely.

12.5.2 Dual Regev

Note that in El Gamal we had some kind of symmetry we could tilt our head an consider g, gr as the pk and
gs, grs+µ as the ciphertext. But in Regev’s scheme it is a bit different







A

bT = sTA+ eT









v



 = A · r
[
w
]
= bT · r/sT · v

Now, we want to tilt our head in the case of Regev:



 A







v



 = A · r = pk

[

bT
] [

w
]
= bT · r/sT · v = sk

• KeyGen
(
1k
)
: A

R∈ Z
n×m
q and r

R∈ {0, 1}m, v = Ar pk = (A, v) and sk = r.

• Encpk (µ): Choose s
R∈ Z

m
q . e

R∈ χm, bT = sTA+ eT . w = sT · v + µ (q/2) (+η). Return c =
(

bT , w
)

.

• Decsk

(

bT , w
)

: Check
∣
∣
∣w − bT · r

∣
∣
∣...
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Chapter 13

Homomorphic Encryption

13.1 Introduction

Assume that Alice has some input x and there is some function f that Alice wants to compute on x but it is hard
do compute on Alice hardware, but bob can do that, but Alice doesn’t trust Bob with x (but f is known to both).
How can we possibly hope to do that? We could ask Bob nicely not to do that, and that’s what we actually do
with all the cloud computing. We have a promise from the other guy to not reveal our data.

So we want some kind of scheme that Alice will send bob Enc (x), and we want some kind of scheme that will allow
Bob to return Enc (f (x)) without knowing anything about x Meaning that Alice has the sk and Bob has only the
pk but still he succeed to form Enc (f (x)) from Enc (x).

13.2 Definition

Definition 13.2.1 (F-Homomorphic Encryption Scheme) Let F = {Fk} class of functions Fk ⊆ {0, 1}∗ →
{0, 1}. An F -Homomorphic Encryption Scheme is a tuple of algorithms: (KeyGen,Enc,Dec,Eval). Where

KeyGen,Enc,Dec are just like in regular PKE. And Evalpk




1k, f

︸︷︷︸

∈Fk

, c1, . . . , cl




 → cf where f : {0, 1}l → {0, 1}

(Note that l is not a parameter of the scheme, we can use eval on any value of l).

Correctness: ∀k, f : {0, 1}l → {0, 1} ∈ Fk, , x1, . . . , xl, Now if:(sk, pk) = KeyGen
(
1k
)

and ci = Encpk (xi). And
finally cf = Evalpk (f, c1, . . . , cl) and xf = Decsk (cf ) then:

xf = f (x1, . . . , xl)

We defined here 1-hop homomorphic encryption, we assume that the ci are fresh and not evaluated ciphertexts.
One could hope to not get just 1-hop and perhaps get many hops.

Moreover, note that right now, this definition can be solved trivially. We do not require cf to have the same
structure as c1, . . . , cl. And in fact we can define:

cf = (c1, . . . , cl, f)

And the decryption will in fact compute f .

But the definition here doesn’t cover the intuition. We wanted to help Alice compute f . So we want to require
some none degeneracy condition that will solve this problem:

Definition 13.2.2 (Compactness) One option for the compactness definition is:|Cf | is independent of f .
Another is: The computational complexity ofDecsk

(
1k, ·

)
is going to be a fixed polynomial in k regardless the

ciphertext.
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The security definition is the regular PKE security definition.

Definition 13.2.3 (Fully Homomorphic Encryption (FHE)) We want F be the class of all functions.
One needs to be careful because the complexity of Eval depends on the complexity of the function.

Moreover, when we say that Eval gets the function, we mean it gets it as a representation of a circuit. We could
also ask what about C code for example? But we will not discuss this in class.

13.3 Additive homomorphism

We have c1 = End (m1) and c2 = Enc (m2) and we want to get: c′ = Enc (m1 ⊕m2).

We consider a scheme similar to Regev, only we define: Â =

[
A
bT

]

and ŝ =

[
−s
1

]

and we define:

ŝ · Â = eT

Using this notation the decryption looks like:
ŝT Ĉ ≈ m · q/2

Candidate:

Now, if we have two of these ciphertexts and add them together:

Ĉ
′
= Ĉ1 + Ĉ2

Note that:
ŝT Ĉ

′
= ŝT

(

Ĉ1 + Ĉ2

)

= ŝT Ĉ1 + ŝT Ĉ2 ≈ µ1q/2 + µq/2 = (µ1 ⊕ µ2) q/2

Remarks 13.3.1 We cannot add as many as we want, because of the noise. Recall that the middle step is ≈, and
as we add more and more items the approximation gets more and more worse. So we cannot do unlimited number
of additions.

13.4 Multiplicative

Wait... How can we multiply vectors? Tensor product? Outer product? Well, there is an hard way that these can
probably be used. But wouldn’t it be easier to use matrices instead of vectors? And we will hide the message in
the approximated eigenvalues of the matrix.

Now, let’s assume that we have the following scheme. Instead of vectors, the ciphertextx will be matrices. So, we
are going to multiply the ciphertext with the secret key(still a vector) and we want:

sTC ≈ µsT

Meaning that we want µ to be “almost” an eigenvalue of the matrix C. Note that we require it to be “almost”
eigenvalue, and not require equality because finding eigenvalues is an easy problem.

Note that now:
sT (C1 + C2) ≈ (µ1 + µ2) s

T

Meaning that addition still holds (again the approximation varies according to addition, we are much less exact).

But what about multiplication?

If we take two matrices and multiply them, and multiply by sT what will we get?

sT (C1 · C2) =
(
sTC1

)

︸ ︷︷ ︸

≈µ1sT

·C2
?≈ µ1s

TC1 ≈ µ1µ2s
T
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So, keeping this intuition in mind, let’s try to see how we can hope to achieve this. We are going to do that using
LWE.

We have:



 Ã







v



 = A · r
[

bT
] [

w
]
= bT · r/sT · v

From LWE, we can consider the entire matrix and it is indistinguishable from a uniform matrix.

Now consider:

A =







A

bT







And:

s =

[
s
1

]

So we have that:
sTA = eT

Previously we had:
c = Ar

And this is how we generated ciphertexts that looked like vectors. And we had:

sT c = sTAr

= eT r

But how can we generate matrices? This matrices are just going to be bunch of this vectors. We generate a matrix
C as: C = A · R (This is equivalent to generate the matrix by repeating the vectors multiplication). Due to LWE
we going to have:

(A,C) ∼= Uniform

So we have A ∈ Z
(n+1)×m
q and s ∈ Zn+1

q , so now: C = A · R ∈ Z
(n+1)×N
q where we can choose N to be whatever

we want (we will choose it later on). Now:

sT · C = sTA · R = eT ·R

And we require that R will be small norm, and therefore:

sT · C ≈ 0

But how can we get:
sT · C ≈ µsT

Note that (C +H) for H that is not dependent on the randomness of C, is indistinguishable from uniform. So we
want to find H such that:

sT (C +H) = sT · S + sTH ≈ sT ·H

So, what will happen if we choose N = n+ 1 and then:

H = µ · I

And we indeed get:
sT (C +H) ≈ µsT

It is trivial that addition will work. Let’s look at multiplication.

63



13.4. MULTIPLICATIVE CHAPTER 13. HOMOMORPHIC ENCRYPTION

Now we have:
sT · C = µsT + εT

Where: εT = eT · R.

Now we have:

sT (C1C2) =
(
sTC1

)
C2

=
(
µ1s

T + εT1
)
C2

= µ1

(
µ2s

T + εT2
)
+ εT1 · C2

= µ1µ2s
T + µ1ε

T
2 + εT1 C2

But note that C2 is not bounded, hence εT1 C2 can be large. So if only C2 had low norm, we would have finish. But
it can’t be because it needs to be indistinguishable from uniform. So what can we do?

13.4.1 Reducing the norm of a matrix

Let’s start by reducing the norm of the following matrix:
[
1 3
2 5

]

( mod 8)

The stupidest thing we can do is to multiply it by a small element, but since we are working with finite field it is
not clear what will happen, and we will loose some of the precision.

So what can we do? we can transform to binary by enlarging the dimensions:










0 0
0 1
1 1
0 1
1 0
0 1











We want to find a matrix such that:



 ?















0 0
0 1
1 1
0 1
1 0
0 1











=

[
1 3
2 5

]

( mod 8)

Note that the matrix needs to be 2× 6. But what should it be? Consider the following:

[
4 2 1 0 0 0
0 0 0 4 2 1

]











0 0
0 1
1 1
0 1
1 0
0 1











=

[
1 3
2 5

]

( mod 8)

So although the original operation is not linear operation, the inverse operation is indeed linear (we even calculated
the matrix related to the operation).

Let’s denote the inverse operation’s matrix with G:

G =






2log q−1 2log q−2 . . . 2 1 0
2log q−1 . . . 1

. . .





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If q is not a power of two, we can simply pad it.

What are the dimensions of G? G ∈ Zℓ×ℓ log q
q . So this is a short and wide matrix. Because G is the inverse

of the binary decomposition we have seen before, we going to denote the decomposition by G−1 (A) : Zℓ×ℓ′

q →
{0, 1}ℓ log q→ℓ′

that does the binary decomposition as we’ve seen (again, this is not a matrix, because this is not a
linear transformation!). But it still holds that:

G ·G−1 (A) = A

13.5 Homomorphic Encryption Scheme

Now we can construct an homomorphic encryption scheme:

• KeyGen
(
1k
)
: Construct A, s (LWE instance). Output: pk = A , sk = s.

• Encpk (µ): C = AR+ µG, for R
R∈ {0, 1}m×N where N = (n+ 1) log q (note that G is of dimension (n+ 1)×

(n+ 1) log q).

• Decsk (C):
∥
∥sTC

∥
∥
∞
≤ q/8 output 0, otherwise output 1.

Why is this an encryption scheme? Or why is it hold correctness?

Note that:

sT (AR + µG) = sTAR + µsTG

= eTR+ µsTG

If µ = 0 then we have only eTR but note that:
∥
∥eTR

∥
∥
∞
≤ m ·B ‖R‖∞ ≤ mB

where m is the bound on the error. Last step holds is because R is {0, 1} matrix.

Now, If µ = 1 note that we also have sT ·G in the term. We have:

sTG =
[
2log q−1 · s1, 2log q−2s1, . . . , 2s1, s1, 2

log q−1s2, . . . , 2s2, s2, s
log q−1s3, . . .

]

Note that because the way we construct it, one of the values must be in the range of
(
q
4 ,

q
2

)
(in our case it must be

because s as a coordinate which is 1), so we have:

∥
∥sT ·G

∥
∥
∞
≥ q

4

So if: µ = 0 then:
∥
∥sTC

∥
∥ =

∥
∥eTR

∥
∥ ≤ mB

But if µ = 1 then:
∥
∥sTC

∥
∥ ≥ q/4−mB

So we have correctness for fresh ciphertext.

What about homomorphic evaluation? Note that now: sTC = µ · sTG + εT . In order to do multiplication
we calculate: C1G

−1 (C2). What will happen when we try to decrypt it?

sT
(
C1G

−1 (C2)
)

=
(
sTC1

)
G−1 (C2)

=
(
µ1s

TG+ εT1
)
G−1 (C2)

= µ1s
TC2 + εT1 G

−1 (C2)

= µ1

(
µ2s

TG+ εT2
)
+ εT1 G

−1 (C2)

= µ1µ2s
TG+ µ1ε

T
2 + εT1 G

−1 (C2)
︸ ︷︷ ︸

εTmult
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So, how big is going to be εTmult? ∥
∥εTmult

∥
∥ ≤ ‖ε2‖+N ‖ε1‖

So εTmult is in order of (n+ 1) log q!

But AND is not universal, we want to get a NAND gate. Note that:

NAND (µ1, µ2) = 1− µ1µ2

So note that we can calculate:
HomNAND (C1, C2) = G− C1 ·G−1 (C2)

Note that the noise here grows exactly like in multiplication.

But NAND is universal, so we can now calculate every function f . And we define to evaluate homomorphically:

• Eval (f, C1, . . . , Cℓ): (The pk is not required here). Present f as NAND circuit, in topological order (Gate
with inputs, then the next level that can be evaluated, etc. Until we get values to the output wire). In a more
formal way, we are numbering all the wires in the circuit in a way such that for every gate the output wires
are strictly larger then the input wires of the gate. For wire: w = ℓ+ 1, . . . , out, Let i, j be the inputs to the
gate that computes w. Inductively Ci, Cj are well defined. Define: Cw = HomNAND (Ci, Cj).⇒ Cout is an
encryption of f (x1, . . . , xℓ).

13.6 The Noise

What happen to the noise when we calculate arbitrary circuits? At the beginning the noise is mB. But after the
evaluation, the noise of the output is going to be ‖εout‖ ≤ m ·B (N + 1)

d
where d is the depth of the NAND circuit

representing the function f we are evaluating.

Note that we require that ‖εout‖ < q/8 that is m · B (N + 1)
d ≤ q/8 so in order to support circuits of depth d we

want to choose: q ≈ NO(d). But note that B (the bound of the noise) cannot get much smaller that q because then
LWE become easier. We don’t really know the hardness of LWE, but for the current best algorithms, we want:
d = õ (N).

So, sadly the scheme as it is cannot support arbitrary circuits.
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